Efficient screening of climate model sensitivity to a large number of perturbed input parameters

Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2–3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling, the Morris one‐at‐a‐time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N‐dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one‐at‐a‐time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM's behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT's ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience.

[1]  A. M. Dunker,et al.  Efficient calculation of sensitivity coefficients for complex atmospheric models , 1981 .

[2]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[3]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[4]  J. Hack Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) , 1994 .

[5]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[6]  A. Saltelli,et al.  Sensitivity analysis: Could better methods be used? , 1999 .

[7]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[8]  Godfried Augenbroe,et al.  Analysis of uncertainty in building design evaluations and its implications , 2002 .

[9]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[10]  S. Funtowicz,et al.  Combining Quantitative and Qualitative Measures of Uncertainty in Model‐Based Environmental Assessment: The NUSAP System , 2005, Risk analysis : an official publication of the Society for Risk Analysis.

[11]  Peter A. Vanrolleghem,et al.  Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT , 2005 .

[12]  Leonard A. Smith,et al.  Uncertainty in predictions of the climate response to rising levels of greenhouse gases , 2005, Nature.

[13]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[14]  Simon J. Brown,et al.  Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments , 2006 .

[15]  James J. Hack,et al.  The Dynamical Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[16]  A. Saltelli,et al.  The role of sensitivity analysis in ecological modelling , 2007 .

[17]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[18]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[19]  Mazdak Arabi,et al.  A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices , 2007 .

[20]  Mrinal K. Sen,et al.  Error Reduction and Convergence in Climate Prediction , 2008 .

[21]  Holger R. Maier,et al.  Future research challenges for incorporation of uncertainty in environmental and ecological decision-making , 2008 .

[22]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[23]  F. Graziani,et al.  A Practical Global Sensitivity Analysis Methodology for Multi-Physics Applications , 2008 .

[24]  Fei He,et al.  Sensitivity analysis and robust experimental design of a signal transduction pathway system , 2008 .

[25]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[26]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[27]  Gilles Pujol,et al.  Simplex-based screening designs for estimating metamodels , 2009, Reliab. Eng. Syst. Saf..

[28]  Efstratios N. Pistikopoulos,et al.  Global Sensitivity Analysis Challenges in Biological Systems Modeling , 2009 .

[29]  R. Neale,et al.  Improvements in a half degree atmosphere/land version of the CCSM , 2010 .

[30]  James C McWilliams,et al.  Considerations for parameter optimization and sensitivity in climate models , 2010, Proceedings of the National Academy of Sciences.

[31]  M. Webb,et al.  Structural similarities and differences in climate responses to CO2 increase between two perturbed physics ensembles. , 2010 .

[32]  M. Webb,et al.  Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles , 2011 .

[33]  Benjamin M. Sanderson,et al.  A Multimodel Study of Parametric Uncertainty in Predictions of Climate Response to Rising Greenhouse Gas Concentrations , 2011 .

[34]  Robert Pincus,et al.  On Constraining Estimates of Climate Sensitivity with Present-Day Observations through Model Weighting , 2011 .

[35]  S. Klein,et al.  A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model , 2011 .

[36]  Donald D. Lucas,et al.  Poster: Data intensive uncertainty quantification: applications to climate modeling , 2011, SC '11 Companion.

[37]  Regional assessment of the parameter‐dependent performance of CAM4 in simulating tropical clouds , 2012 .

[38]  Kenneth S. Carslaw,et al.  Mapping the uncertainty in global CCN using emulation , 2012 .

[39]  Wei Gong,et al.  Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis , 2013 .

[40]  Donald D. Lucas,et al.  Failure analysis of parameter-induced simulation crashes in climate models , 2013 .