Spatial processing using oracle table functions

Spatial joins and spatial index creation are two of the most expensive operations in Oracle Spatial. Since spatial indexing is implemented in extensible indexing framework where queries only return rows from a single table, spatial joins could not be effectively and efficiently implemented in Oracle8i and prior releases. On the other hand, spatial indexcreationinvolvesmuchcomputationorI/Othatcouldbe easily parallelized. In this paper, we describe how Oracle Spatial applies parallel and pipelined table function technology to perform fast spatial joins and parallel index creation. This technologyhas been introduced in Oracle9i and allows users to iteratively return subsets of result rows to be used in the “from” clause of a SQL query. We present our experiences with these implementations and examine the performance on real datasets.

[1]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[2]  Raj Jain,et al.  Algorithms and strategies for similarity retrieval , 1996 .

[3]  Timos K. Sellis,et al.  A model for the prediction of R-tree performance , 1996, PODS.

[4]  C. V. Ramamoorthy,et al.  Knowledge and Data Engineering , 1989, IEEE Trans. Knowl. Data Eng..

[5]  Timos K. Sellis,et al.  Optimization Issues in R-tree Construction (Extended Abstract) , 1994, IGIS.

[6]  Kothuri Venkata Ravi Kanth,et al.  Efficient Processing of Large Spatial Queries Using Interior Approximations , 2001, SSTD.

[7]  Elke A. Rundensteiner,et al.  Spatial Joins Using R-trees: Breadth-First Traversal with Global Optimizations , 1997, VLDB.

[8]  Christos Faloutsos,et al.  The TV-tree: An index structure for high-dimensional data , 1994, The VLDB Journal.

[9]  Divyakant Agrawal,et al.  Approximate nearest neighbor searching in multimedia databases , 2001, Proceedings 17th International Conference on Data Engineering.

[10]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[11]  Beng Chin Ooi,et al.  Indexing the Distance: An Efficient Method to KNN Processing , 2001, VLDB.

[12]  Hans-Peter Kriegel,et al.  Indexing the Solution Space: A New Technique for Nearest Neighbor Search in High-Dimensional Space , 2000, IEEE Trans. Knowl. Data Eng..

[13]  Ambuj K. Singh,et al.  Dimensionality Reduction for Similarity Searching in Dynamic Databases , 1999, Comput. Vis. Image Underst..

[14]  Jay Banerjee,et al.  Indexing medium-dimensionality data in Oracle , 1999, SIGMOD '99.

[15]  Mario A. López,et al.  STR: a simple and efficient algorithm for R-tree packing , 1997, Proceedings 13th International Conference on Data Engineering.

[16]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[17]  Mario A. López,et al.  A greedy algorithm for bulk loading R-trees , 1998, GIS '98.

[18]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[19]  Kothuri Venkata Ravi Kanth,et al.  Quadtree and R-tree indexes in oracle spatial: a comparison using GIS data , 2002, SIGMOD '02.

[20]  C. Mohan,et al.  Concurrency and recovery in generalized search trees , 1997, SIGMOD '97.

[21]  Hanan Samet,et al.  Recent developments in linear quadtree-based geographic information systems , 1987, Image Vis. Comput..

[22]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[23]  Fangju Wang,et al.  Relational-Linear Quadtree Approach for Two-Dimensional Spatial Representation and Manipulation , 1991, IEEE Trans. Knowl. Data Eng..

[24]  TheodoridisYannis,et al.  Topological relations in the world of minimum bounding rectangles , 1995 .

[25]  Hanan Samet,et al.  Ranking in Spatial Databases , 1995, SSD.

[26]  Ramesh C. Jain,et al.  Similarity indexing with the SS-tree , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[27]  W. Bruce Croft,et al.  Integrating IR and RDBMS using cooperative indexing , 1995, SIGIR '95.

[28]  Shashi Shekhar,et al.  Efficient Join-Index-Based Join Processing: A Clustering Approach , 1999 .

[29]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[30]  Hans-Peter Kriegel,et al.  A Storage and Access Architecture for Efficient Query Processing in Spatial Database Systems , 1993, SSD.

[31]  David B. Lomet,et al.  The hB-tree: a multiattribute indexing method with good guaranteed performance , 1990, TODS.