Optimization of tile manufacturing process using particle swarm optimization

Abstract In this paper, an integrated optimization approach using an artificial neural network and a bidirectional particle swarm is proposed. The artificial neural network is used to obtain the relationships between decision variables and the performance measures of interest, while the bidirectional particle swarm is used to perform the optimization with multiple objectives. Finally, the proposed approach is used to solve a process parameter design problem in cement roof-tile manufacturing. The results showed that the bidirectional particle swarm is an effective method for solving multi-objective optimization problems, and that an integrated approach using an artificial neural network and a bidirectional particle swarm can be used to solve complex process parameter design problems.

[1]  Kwang-Jae Kim,et al.  Expected Desirability Function: Consideration of Both Location and Dispersion Effects in Desirability Function Approach , 2007 .

[2]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[3]  Chih-Ming Hsu,et al.  A novel approach for optimizing the optical performance of the broadband tap coupler , 2003, Int. J. Syst. Sci..

[4]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[5]  D. Nagesh Kumar,et al.  Multi‐objective particle swarm optimization for generating optimal trade‐offs in reservoir operation , 2007 .

[6]  Ajith Abraham,et al.  Ensemble of hybrid neural network learning approaches for designing pharmaceutical drugs , 2007, Neural Computing and Applications.

[7]  P. Suganthan,et al.  Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods , 2011 .

[8]  Alice E. Smith,et al.  Prediction and optimization of a ceramic casting process using a hierarchical hybrid system of neural networks and fuzzy logic , 2000 .

[9]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Carlos A. Coello Coello,et al.  Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size , 2010, Multi-Objective Swarm Intelligent System.

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Nadia Nedjah,et al.  Multi-Objective Swarm Intelligent Systems - Theory & Experiences , 2010, Multi-Objective Swarm Intelligent Systems.

[13]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Mohammad Ali Abido,et al.  Two-level of nondominated solutions approach to multiobjective particle swarm optimization , 2007, GECCO '07.

[15]  S. Kumanan WELD QUALITY PREDICTION OF SUBMERGED ARC WELDING PROCESS USING A FUNCTION REPLACING HYBRID SYSTEM , 2010 .

[16]  Kiyoshi Tanaka,et al.  On the locality of dominance and recombination in multiobjective evolutionary algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[17]  Lingfeng Wang,et al.  Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm , 2007 .

[18]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[19]  Chao-Ton Su,et al.  Optimization of TQFP molding process using neuro-fuzzy-GA approach , 2003, Eur. J. Oper. Res..

[20]  P. B. Deolalikar,et al.  Neural Networks for Estimation of Scour Downstream of a Ski-Jump Bucket , 2005 .

[21]  Ali Khorram,et al.  Modeling and Optimization of Milling Process by using RSM and ANN Methods , 2010 .

[22]  Ponnuthurai Nagaratnam Suganthan,et al.  Two-lbests based multi-objective particle swarm optimizer , 2011 .

[23]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[25]  J. Khazaei,et al.  A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique , 2008 .

[26]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[27]  Bijaya K. Panigrahi,et al.  On Some Properties of the lbest Topology in Particle Swarm Optimization , 2009, 2009 Ninth International Conference on Hybrid Intelligent Systems.

[28]  Ching-Shih Tsou,et al.  Multi-objective inventory planning using MOPSO and TOPSIS , 2008, Expert Syst. Appl..

[29]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[30]  Zlatan Car,et al.  GA BASED CNC TURNING CENTER EXPLOITATION PROCESS PARAMETERS OPTIMIZATION , 2009 .

[31]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[32]  Abel G. Silva-Filho,et al.  MOPSO Applied to Architecture Tuning with Unified Second-Level Cache for Energy and Performance Optimization , 2010, 2010 22nd International Symposium on Computer Architecture and High Performance Computing.

[33]  Peter Sinčák,et al.  Intelligent technologies - theory and applications : new trends in intelligent technologies , 2002 .

[34]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[35]  Zhang Guo-an,et al.  Extended individual memory based multi-objective particle swarm optimization , 2010, 2010 2nd International Conference on Future Computer and Communication.

[36]  Yong Li,et al.  PSO-based neural network optimization and its utilization in a boring machine , 2006 .

[37]  João Paulo Davim,et al.  Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm , 2010 .

[38]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[39]  Christine W. Chan,et al.  Applications of data analysis techniques for oil production prediction , 2005, Eng. Appl. Artif. Intell..

[40]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[41]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[42]  P. B. Deolalikar,et al.  Estimation of scour below spillways using neural networks , 2006 .

[43]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[44]  R. Saravanan,et al.  A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations , 2002 .

[45]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[46]  Chih-Ming Hsu Improving the electroforming process in optical recordable media manufacturing via an integrated procedure , 2004 .

[47]  R. Saravanan,et al.  OPTIMIZATION OF OPERATING PARAMETERS FOR EDM PROCESS BASED ON THE TAGUCHI METHOD AND ARTIFICIAL NEURAL NETWORK , 2007 .

[48]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[49]  Franci Cus,et al.  Optimization of cutting process by GA approach , 2003 .

[50]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[51]  Yongde Zhang,et al.  A novel multiobjective particle swarm optimization for buoys-arrangement design , 2004 .

[52]  A. Noorul Haq,et al.  Optimization of friction welding parameters using evolutionary computational techniques , 2009 .

[53]  H. Md. Azamathulla,et al.  Alternative neural networks to estimate the scour below spillways , 2008, Adv. Eng. Softw..