Annealing induced inversion of quantum dot fine-structure splitting

By mapping the anisotropy fine-structure splitting of the exciton ground state in the luminescence spectra of individual CdxZn1−xSe quantum dots, treated by postgrowth rapid thermal annealing (TA), a preferred in-plane axis of Zn–Cd interdiffusion has been identified. In particular, a TA-induced sign reversal of the fine-structure splitting is demonstrated. Additionally, in the annealed quantum dots, the binding energy of the charged exciton reaches a maximum value when the fine-structure splitting is minimum. The studies demonstrate that by postgrowth thermal annealing the symmetry of individual quantum dot can be modulated.

[1]  G. Tendeloo,et al.  Structural and optical properties of CdSe quantum dots induced by amorphous Se , 2007 .

[2]  L. Worschech,et al.  Enhanced Zn–Cd interdiffusion and biexciton formation in self-assembled CdZnSe quantum dots in thermally annealed small mesas , 2006 .

[3]  C. Bougerol,et al.  Elastic and surface energies: Two key parameters for CdSe quantum dot formation , 2006 .

[4]  O. Hulko,et al.  Rapid thermal annealing of InAs∕GaAs quantum dots with a low-temperature-grown InGaP cap layer , 2006 .

[5]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[6]  A. Schliwa,et al.  Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. , 2005, Physical review letters.

[7]  F. Henneberger,et al.  Electron-hole exchange interaction in a negatively charged quantum dot , 2005 .

[8]  G. Ceder,et al.  First principles calculation of the interdiffusion coefficient in binary alloys. , 2005, Physical review letters.

[9]  E. Kapon,et al.  Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires , 2004, cond-mat/0410050.

[10]  J. Bläsing,et al.  Ostwald ripening and flattening of epitaxial ZnO layers during in situ annealing in metalorganic vapor phase epitaxy , 2004 .

[11]  M. Hudait,et al.  Atomic layer diffusion and electronic structure at In0.53Ga0.47As/InP interfaces , 2004 .

[12]  F. Peeters,et al.  Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs -based quantum wells , 2004, cond-mat/0401466.

[13]  W. Ossau,et al.  Binding energy of charged excitons in ZnSe-based quantum wells , 2001, cond-mat/0112002.

[14]  V. Kulakovskii,et al.  Buried CdTe/CdMgTe single quantum dots using selective thermal interdiffusion , 2001 .

[15]  M Rabe,et al.  Photon beats from a single semiconductor quantum dot. , 2001, Physical review letters.

[16]  Rosa Weigand,et al.  Fine Structure of Biexciton Emission in Symmetric and Asymmetric CdSe/ZnSe Single Quantum Dots , 1999 .

[17]  V. Kulakovskii,et al.  Exciton complexes in In x Ga 1 − x A s / G a A s quantum dots , 1998 .

[18]  Ekimov,et al.  Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect. , 1996, Physical review. B, Condensed matter.

[19]  Andrews,et al.  Exchange interaction of excitons in GaAs heterostructures. , 1994, Physical review. B, Condensed matter.

[20]  A. Forchel,et al.  Photoluminescence study of interdiffusion in In0.53Ga0.47As/InP surface quantum wells , 1992 .

[21]  J. Beeman,et al.  Modeling the Stress Evolution of Ion Beam Synthesized Nanocrystals , 2004 .

[22]  M. Glicksman Diffusion in solids : field theory, solid-state principles, applications , 2000 .

[23]  C. Jagadish,et al.  Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots , 1996 .