A Simulation-Extrapolation Method for Bivariate Survival Data with Covariates Subject to Measurement Error

DepartmentofStatisticsandActuarialScience,UniversityofWaterloo,200UniversityAvenueWest,Waterloo, ON, Canada N2L 3G1AbstractInrecentyears,usingfrailtymodelstoanalyzebivariatesurvivaldatahasattractedcon-siderable interest. The validity of standard inference methods in this setting relies onthe assumption that explanatory variables are precisely measured. In the presence ofmeasurement error in one or more covariates, the resulting estimates of model parame-ters may be biased. In this paper we describe a simulation-extrapolation method of an-alyzing bivariate survival data when some covariates are subject to measurement error.Through simulation studies we evaluate the performance of the proposed method, aswell as the impact of ignoring measurement error in covariates. The proposed methodisillustrated byanalyzinga dataset arising from the Busselton Health Study (Knuimanet al. 1994).Keywords: Accelerated life regression model, bivariate time-to-event data, measure-ment error, simulation-extrapolation.2000 Mathematics Subject Classification: 62H12, 62F99.

[1]  J. D. Holt,et al.  Survival analyses in twin studies and matched pair experiments , 1974 .

[2]  R. Henderson,et al.  Effect of frailty on marginal regression estimates in survival analysis , 1999 .

[3]  Wenqing He,et al.  Methods for Bivariate Survival Data with Mismeasured Covariates Under an Accelerated Failure Time Model , 2006 .

[4]  D. Lin,et al.  Cox regression analysis of multivariate failure time data: the marginal approach. , 1994, Statistics in medicine.

[5]  Yi Li,et al.  Covariate measurement errors in frailty models for clustered survival data , 2000 .

[6]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[7]  J. R. Cook,et al.  Simulation-Extrapolation: The Measurement Error Jackknife , 1995 .

[8]  Yun-Hee Choi,et al.  Accelerated life regression modelling of dependent bivariate time‐to‐event data , 2005 .

[9]  A K Manatunga,et al.  Parametric Analysis for Matched Pair Survival Data , 1999, Lifetime data analysis.

[10]  J. R. Cook,et al.  Simulation-Extrapolation Estimation in Parametric Measurement Error Models , 1994 .

[11]  D. Lin,et al.  Semiparametric Failure Time Regression With Replicates of Mismeasured Covariates , 2004 .

[12]  Raymond J. Carroll,et al.  Bias Analysis and SIMEX Approach in Generalized Linear Mixed Measurement Error Models , 1998 .

[13]  Xihong Lin,et al.  Functional Inference in Frailty Measurement Error Models for Clustered Survival Data Using the SIMEX Approach , 2003 .

[14]  Scott L. Zeger,et al.  Some recent developments for regression analysis of multivariate failure time data , 1995, Lifetime data analysis.

[15]  Jerald F. Lawless,et al.  Bivariate location–scale models for regression analysis, with applications to lifetime data , 2005 .

[16]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[17]  M W Knuiman,et al.  Mortality trends, 1965 to 1989, in Busselton, the site of repeated health surveys and interventions. , 2010, Australian journal of public health.

[18]  N. Keiding,et al.  The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. , 1997, Statistics in medicine.

[19]  Raymond J. Carroll,et al.  Asymptotics for the SIMEX Estimator in Nonlinear Measurement Error Models , 1996 .

[20]  W Pan,et al.  Using Frailties in the Accelerated Failure Time Model , 2001, Lifetime data analysis.

[21]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[22]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[23]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .