Planarity and Hyperbolicity in Graphs

If X is a geodesic metric space and $$x_1,x_2,x_3$$x1,x2,x3 are three points in $$X$$X, a geodesic triangle$$T=\{x_1,x_2,x_3\}$$T={x1,x2,x3} is the union of three geodesics $$[x_1x_2]$$[x1x2], $$[x_2x_3]$$[x2x3] and $$[x_3x_1]$$[x3x1] in $$X$$X. The space $$X$$X is $$\delta $$δ-hyperbolic$$($$(in the Gromov sense$$)$$) if any side of $$T$$T is contained in a $$\delta $$δ-neighborhood of the union of the two other sides, for every geodesic triangle $$T$$T in $$X$$X. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. In this paper we obtain criteria which allow us to decide, for a large class of graphs, whether they are hyperbolic or not. We are especially interested in the planar graphs which are the “boundary” (the $$1$$1-skeleton) of a tessellation of the Euclidean plane. Furthermore, we prove that a graph obtained as the $$1$$1-skeleton of a general CW $$2$$2-complex is hyperbolic if and only if its dual graph is hyperbolic.

[1]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[2]  S. Gersten Essays in Group Theory , 2011 .

[3]  José M. Rodríguez,et al.  Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains , 2010 .

[4]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[5]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[6]  S. Buckley,et al.  Geometric characterizations of Gromov hyperbolicity , 2003 .

[7]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[8]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[9]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..

[10]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[11]  J. Heinonen,et al.  Uniformizing Gromov hyperbolic spaces , 2001 .

[12]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[13]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.

[14]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[15]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[16]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[17]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[18]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[19]  P. Hästö Gromov hyperbolicity of the jG and jG metrics , 2005 .

[20]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[21]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[22]  Jose Maria Sigarreta,et al.  Distortion of the Hyperbolicity Constant of a Graph , 2012, Electron. J. Comb..

[23]  A. Downard,et al.  The stability of diazonium ion terminated films on glassy carbon and gold electrodes , 2012 .

[24]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[25]  JOSÉ M RODRÍGUEZ,et al.  Bounds on Gromov hyperbolicity constant in graphs , 2012 .

[26]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .