Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion

Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal cyclic-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated with this patho-adaptive transition. Here, we identify an unrecognized SadC partner, WarA, which we show is a methyltransferase in complex with a putative kinase, WarB. We established that WarA binds to cyclic-di-GMP, which potentiates its methyltransferase activity. Together, WarA and WarB have structural similarities with the bifunctional Escherichia coli lipopolysaccharide (LPS) O antigen regulator WbdD. Strikingly, WarA influences P. aeruginosa O antigen modal distribution and interacts with the LPS biogenesis machinery. LPS is known to modulate the immune response in the host, and by using a zebrafish infection model, we implicate WarA in the ability of P. aeruginosa to evade detection by the host.

[1]  Michael Y. Galperin,et al.  Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems , 2015, PLoS pathogens.

[2]  D. Amikam,et al.  Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Pessi,et al.  Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[4]  U. Jenal,et al.  The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa , 2014, Journal of bacteriology.

[5]  T. Wilhelm,et al.  Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP* , 2015, The Journal of Biological Chemistry.

[6]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[7]  G. Pier Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. , 2007, International journal of medical microbiology : IJMM.

[8]  V. Lee,et al.  Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions , 2011, Proceedings of the National Academy of Sciences.

[9]  P. Hitchcock,et al.  Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.

[10]  M. Maciá,et al.  Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation , 2007, Infection and Immunity.

[11]  E. Gotschlich,et al.  A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. , 1984, Analytical biochemistry.

[12]  D. Amikam,et al.  Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens , 1989, Journal of bacteriology.

[13]  R. Ryan Cyclic di-GMP signalling and the regulation of bacterial virulence , 2013, Microbiology.

[14]  C. Whitfield,et al.  Monoclonal antibodies against the capsular K antigen of Escherichia coli (O9:K30(A):H12): characterisation and use in analysis of K antigen organisation on the cell surface. , 1988, Canadian journal of microbiology.

[15]  J. Lee,et al.  Pseudomonas aeruginosa Infection of Zebrafish Involves both Host and Pathogen Determinants , 2009, Infection and Immunity.

[16]  H. Schweizer,et al.  Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype O5) , 1995, Molecular microbiology.

[17]  S. de Bentzmann,et al.  A bacterial two-hybrid genome fragment library for deciphering regulatory networks of the opportunistic pathogen Pseudomonas aeruginosa. , 2012, Microbiology.

[18]  C. Whitfield,et al.  Domain Interactions Control Complex Formation and Polymerase Specificity in the Biosynthesis of the Escherichia coli O9a Antigen* , 2014, The Journal of Biological Chemistry.

[19]  J. M. Dow,et al.  Crystal structure of an HD‐GYP domain cyclic‐di‐GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre , 2013, Molecular microbiology.

[20]  G. Sezonov,et al.  Escherichia coli Physiology in Luria-Bertani Broth , 2007, Journal of bacteriology.

[21]  J. Lam,et al.  Five New Genes Are Important for Common Polysaccharide Antigen Biosynthesis in Pseudomonas aeruginosa , 2013, mBio.

[22]  S. Mostowy,et al.  Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions , 2014, Journal of visualized experiments : JoVE.

[23]  T. Sharpe,et al.  Inherent Regulation of EAL Domain-catalyzed Hydrolysis of Second Messenger Cyclic di-GMP* , 2014, The Journal of Biological Chemistry.

[24]  J. Goldberg,et al.  Avirulence of a Pseudomonas aeruginosa algC mutant in a burned-mouse model of infection , 1995, Infection and immunity.

[25]  A. Zakrzewska,et al.  Transcriptome Profiling and Functional Analyses of the Zebrafish Embryonic Innate Immune Response to Salmonella Infection1 , 2009, The Journal of Immunology.

[26]  J. Lam,et al.  Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. , 2014, Canadian journal of microbiology.

[27]  C. Whitfield,et al.  Coordination of Polymerization, Chain Termination, and Export in Assembly of the Escherichia coli Lipopolysaccharide O9a Antigen in an ATP-binding Cassette Transporter-dependent Pathway* , 2009, The Journal of Biological Chemistry.

[28]  T. Kawamura,et al.  The structure of the O-specific chain of lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584). , 1986, Journal of biochemistry.

[29]  Markus Meuwly,et al.  Allosteric Control of Cyclic di-GMP Signaling* , 2006, Journal of Biological Chemistry.

[30]  M. Goody,et al.  Neutralization of Mitochondrial Superoxide by Superoxide Dismutase 2 Promotes Bacterial Clearance and Regulates Phagocyte Numbers in Zebrafish , 2014, Infection and Immunity.

[31]  T. Pitt,et al.  Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa , 1984, Infection and immunity.

[32]  C. Hall,et al.  The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish , 2007, BMC Developmental Biology.

[33]  J. Goldberg,et al.  The galU Gene of Pseudomonas aeruginosa Is Required for Corneal Infection and Efficient Systemic Spread following Pneumonia but Not for Infection Confined to the Lung , 2004, Infection and Immunity.

[34]  P. Williams,et al.  The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. , 2011, Environmental microbiology.

[35]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  V. Méjean,et al.  Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis , 2010, Molecular microbiology.

[37]  J. Lam,et al.  A comparison of the efficiency in serotyping of Pseudomonas aeruginosa from cystic fibrosis patients using monoclonal and polyclonal antibodies , 1989, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[38]  A. Kropinski,et al.  Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa , 1989, Journal of clinical microbiology.

[39]  Michael Y. Galperin,et al.  PilZ domain is part of the bacterial c-di-GMP binding protein , 2006, Bioinform..

[40]  L. Burrows,et al.  Genetics of O-Antigen Biosynthesis inPseudomonas aeruginosa , 1999, Microbiology and Molecular Biology Reviews.

[41]  Clare R. Harding,et al.  Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection , 2013, Journal of visualized experiments : JoVE.

[42]  C. Khursigara,et al.  Visualizing and quantifying Pseudomonas aeruginosa infection in the hindbrain ventricle of zebrafish using confocal laser scanning microscopy. , 2015, Journal of microbiological methods.

[43]  C. Whitfield,et al.  Nonreducing Terminal Modifications Determine the Chain Length of Polymannose O Antigens of Escherichia coli and Couple Chain Termination to Polymer Export via an ATP-binding Cassette Transporter* , 2004, Journal of Biological Chemistry.

[44]  Yuliang Wu,et al.  Detecting protein–protein interactions by far western blotting , 2007, Nature Protocols.

[45]  L. Burrows,et al.  Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. , 1999, Microbiology.

[46]  I. Brockhausen,et al.  Biosynthesis of the Common Polysaccharide Antigen of Pseudomonas aeruginosa PAO1: Characterization and Role of GDP-d-Rhamnose:GlcNAc/GalNAc-Diphosphate-Lipid α1,3-d-Rhamnosyltransferase WbpZ , 2015, Journal of bacteriology.

[47]  C. Whitfield,et al.  Structure of WbdD: a bifunctional kinase and methyltransferase that regulates the chain length of the O antigen in Escherichia coli O9a , 2012, Molecular microbiology.

[48]  C. Gahan,et al.  Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. , 2010, Microbiology.

[49]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[50]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[51]  D. Svergun,et al.  A coiled-coil domain acts as a molecular ruler in LPS chain length regulation , 2014, Nature Structural &Molecular Biology.

[52]  C. Khursigara,et al.  Single-Nucleotide Polymorphisms Found in the migA and wbpX Glycosyltransferase Genes Account for the Intrinsic Lipopolysaccharide Defects Exhibited by Pseudomonas aeruginosa PA14 , 2015, Journal of bacteriology.

[53]  James C. Abbott,et al.  c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress , 2011, PLoS pathogens.

[54]  J. Lam,et al.  Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa , 2009, Innate immunity.

[55]  U. Jenal,et al.  Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication , 2015, Nature.

[56]  D. Hughes,et al.  Structural studies on the polysaccharide portion of "A-band" lipopolysaccharide from a mutant (AK1401) of Pseudomonas aeruginosa strain PAO1 , 1991 .

[57]  C. Galanos,et al.  Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels , 1990, Journal of clinical microbiology.

[58]  P. Cossart,et al.  The Zebrafish as a New Model for the In Vivo Study of Shigella flexneri Interaction with Phagocytes and Bacterial Autophagy , 2013, PLoS pathogens.

[59]  Vincent T. Lee,et al.  Systematic identification of conserved bacterial c-di-AMP receptor proteins , 2013, Proceedings of the National Academy of Sciences.

[60]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.