Nano-opto-mechanically modulated plasmonic nanoantenna-integrated quantum cascade laser

We report mechanical frequency and amplitude modulation of a quantum cascade laser (QCL) integrated with a plasmonic antenna operating at ~6.1 μm. We have observed a shift in the lasing frequency by over 30 GHz and an intensity modulation of ~74% when an atomic force microscope (AFM) tip approaches the hot spot of a metal-dielectricmetal (MDM) bow-tie antenna integrated onto the facet of the laser. The tip diameter is ~λ/60 and in non-contact mode its amplitude of motion is ~λ/120. We have presented a theoretical model based on the rate equations for a QCL which affirms our experimental observations. Our experiment demonstrates the strong influence of the hot spot on the laser cavity modes, despite the fact that the former is many orders of magnitude smaller than the latter. We have compared our device to a previous mechanically frequency modulated QCL and calculated a figure of merit, change in frequency divided by change in distance of the mechanical component (Δf/Δd), which is an order of magnitude higher, while our design uses a volumetric change per λ3 that is five orders of magnitude smaller. Our device differs from optical gradient force actuated devices in that our device is externally mechanically actuated while those devices are self actuated through the optical force. This sensitivity of the laser cavity mode to the position of a nanometer-scale metallic absorber opens up the opportunity for modulating large amount of optical power by changing the optical properties of a miniscule volume in an integrated, chip-scale device.

[1]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[2]  Fow-Sen Choa,et al.  Electrical derivative measurement of quantum cascade lasers , 2011 .

[3]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[4]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[5]  J. Faist,et al.  High power mid‐infrared (λ∼5 μm) quantum cascade lasers operating above room temperature , 1996 .

[6]  R. Gelfand,et al.  Nanocavity plasmonic device for ultrabroadband single molecule sensing. , 2009, Optics letters.

[7]  Federico Capasso,et al.  Bowtie plasmonic quantum cascade laser antenna. , 2007, Optics express.

[8]  Carlo Sirtori,et al.  Resonant tunneling in quantum cascade lasers , 1998 .

[9]  Peter R. Griffiths,et al.  Comprar Fourier Transform Infrared Spectrometry | James D. Winefordner | 9780471194040 | Wiley , 2007 .

[10]  J. Aizpurua,et al.  Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. , 2010, Nano letters.

[11]  Nanfang Yu,et al.  Plasmonic Laser Antennas and Related Devices , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  J. Faist,et al.  The Quantum Cascade Laser , 1994 .

[13]  D. Thourhout,et al.  Optomechanical device actuation through the optical gradient force , 2010 .

[14]  A. Bonakdar,et al.  Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna. , 2010, Optics letters.

[15]  W. Marsden I and J , 2012 .

[16]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009 .

[17]  A. Tredicucci,et al.  Improved CW operation of quantum cascade lasers with epitaxial-side heat-sinking , 1999, IEEE Photonics Technology Letters.

[18]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[19]  Nanfang Yu,et al.  Plasmonic Quantum Cascade Laser Antenna , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[20]  Liviu Nicu,et al.  Micro-optomechanical sensor for optical connection in the near field , 2000 .

[21]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[22]  F. Keilmann,et al.  Pure optical contrast in scattering‐type scanning near‐field microscopy , 2001, Journal of microscopy.

[23]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[24]  Hooman Mohseni,et al.  An opto-electro-mechanical infrared photon detector with high internal gain at room temperature. , 2009, Optics express.

[26]  Carlo Sirtori,et al.  Continuous wave operation of midinfrared (7.4–8.6 μm) quantum cascade lasers up to 110 K temperature , 1996 .

[27]  Hooman Mohseni,et al.  Opto-mechanical force mapping of deep subwavelength plasmonic modes. , 2011, Nano letters.

[28]  Hooman Mohseni,et al.  Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition , 2009 .

[29]  Hooman Mohseni,et al.  Plasmonic enhanced quantum well infrared photodetector with high detectivity , 2010 .

[30]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[31]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[32]  Neil Genzlinger A. and Q , 2006 .

[33]  O. G. Memis,et al.  Integrated all-optical infrared switchable plasmonic quantum cascade laser. , 2012, Nano letters.

[34]  A. Bonakdar,et al.  Composite Nano-Antenna Integrated With Quantum Cascade Laser , 2010, IEEE Photonics Technology Letters.

[35]  Giovanni Volpe,et al.  Surface plasmon radiation forces. , 2006, Physical review letters.

[36]  O. G. Memis,et al.  Mechanical frequency and amplitude modulation of a quantum cascade laser integrated with a plasmonic nanoantenna. , 2012, Small.

[37]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[38]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[39]  Oskar Painter,et al.  Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces , 2007 .