Mobile quantum gravity sensor with unprecedented stability

Changes of surface gravity on Earth are of great interest in geodesy, earth sciences and natural resource exploration. They are indicative of Earth system's mass redistributions and vertical surface motion, and are usually measured with falling corner-cube- and superconducting gravimeters (FCCG and SCG). Here we report on absolute gravity measurements with a mobile quantum gravimeter based on atom interferometry. The measurements were conducted in Germany and Sweden over periods of several days with simultaneous SCG and FCCG comparisons. They show the best-reported performance of mobile atomic gravimeters to date with an accuracy of $\mathrm{39\,nm/s^2}$ and long-term stability of $\mathrm{0.5\,nm/s^2}$ short-term noise of $96\,\mathrm{nm/s^2/\sqrt{Hz}}$. These measurements highlight the unique properties of atomic sensors. The achieved level of performance in a transportable instrument enables new applications in geodesy and related fields, such as continuous absolute gravity monitoring with a single instrument under rough environmental conditions.

[1]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[2]  A. Wicht,et al.  A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .

[3]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[4]  A. Peters,et al.  The effect of wavefront aberrations in atom interferometry , 2014, 1411.7914.

[5]  Umberto Riccardi,et al.  The measurement of surface gravity , 2013, Reports on progress in physics. Physical Society.

[6]  A. Clairon,et al.  Limits to the sensitivity of a low noise compact atomic gravimeter , 2008, 0801.1270.

[7]  W. Chaibi,et al.  Characterization and limits of a cold-atom Sagnac interferometer , 2009, 0907.2580.

[8]  R. Forsberg,et al.  Airborne Gravity Field Determination , 2010 .

[9]  Zhongkun Hu,et al.  Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter , 2013 .

[10]  O. Francis,et al.  Uncertainty of absolute gravity measurements , 2005 .

[11]  S. Rosat,et al.  Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series , 2011 .

[12]  J. Peterson,et al.  Observations and modeling of seismic background noise , 1993 .

[13]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[14]  Timothy M. Niebauer,et al.  A new generation of absolute gravimeters , 1995 .

[15]  O. Francis,et al.  Evaluation of the precision of using absolute gravimeters to calibrate superconducting gravimeters , 2002 .

[16]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[17]  Brian Ellis,et al.  CCM.G-K2 key comparison , 2015 .

[18]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[19]  R. Hipkin,et al.  Vertical gradient and datum height corrections to absolute gravimeter data and the effect of structured fringe residuals. , 1995 .

[20]  John K. Stockton,et al.  Absolute geodetic rotation measurement using atom interferometry. , 2011, Physical review letters.

[21]  A. Landragin,et al.  Hybridizing matter-wave and classical accelerometers , 2014, 1410.0050.

[22]  A. Peters,et al.  First gravity measurements using the mobile atom interferometer GAIN , 2013 .

[23]  W. Schleich,et al.  Composite-light-pulse technique for high-precision atom interferometry. , 2015, Physical review letters.

[24]  A. Landragin,et al.  Stability comparison of two absolute gravimeters: optical versus atomic interferometers , 2014, 1406.5134.

[25]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[26]  M. Camp,et al.  Optimized strategy for the calibration of superconducting gravimeters at the one per mille level , 2015, Journal of Geodesy.

[27]  Guochang Xu,et al.  Sciences of geodesy , 2010 .

[28]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[29]  C. Guerlin,et al.  Stability enhancement by joint phase measurements in a single cold atomic fountain , 2014, 1501.01943.