Particle Swarm Optimization for Markerless Full Body Motion Capture

The estimation of full body pose is a very difficult problem in Computer Vision. Due to high dimensionality of the pose space, it is challenging to search the true body configurations for any search strategy. In this chapter, we apply the stochastic Particle Swarm Optimization (PSO) algorithm to full body pose estimation problem. Our method fits an articulated body model to the volume data reconstructed from multiple camera images. Pose estimation is performed in a hierarchical manner with space constraints enforced into each sub-optimization step. To better address the dynamic pose tracking problem, the states of swarm particles are propagated according to a weak transition model. This maintains the diversity of particles and also utilizes the temporal continuity information. 3D distance transform is used for reducing the computing time of fitness evaluations. From the experiments, we demonstrate that by using PSO, our method can robustly fit the body model of a reference pose to the beginning frame, and can track fast human movements in multiple image sequences.

[1]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[2]  Emanuele Trucco,et al.  Human Body Pose Estimation with Particle Swarm Optimisation , 2008, Evolutionary Computation.

[3]  Jürgen Branke,et al.  Multi-swarm Optimization in Dynamic Environments , 2004, EvoWorkshops.

[4]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[5]  Xu Zhao,et al.  Generative tracking of 3D human motion by hierarchical annealed genetic algorithm , 2008, Pattern Recognit..

[6]  Takeo Kanade,et al.  Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[9]  Kenji Shoji,et al.  Pose estimation of a 2D articulated object from its silhouette using a GA , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[10]  Luc Van Gool,et al.  Markerless tracking of complex human motions from multiple views , 2006, Comput. Vis. Image Underst..

[11]  Luc Van Gool,et al.  Smart particle filtering for high-dimensional tracking , 2007, Comput. Vis. Image Underst..

[12]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[13]  Emanuele Trucco,et al.  Human Body Pose Estimation with PSO , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[14]  Christoph Bregler,et al.  Motion capture assisted animation: texturing and synthesis , 2002, ACM Trans. Graph..

[15]  Shinn-Ying Ho,et al.  An evolutionary approach for pose determination and interpretation of occluded articulated objects , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[17]  Mohan M. Trivedi,et al.  Human Body Model Acquisition and Tracking Using Voxel Data , 2003, International Journal of Computer Vision.

[18]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[19]  Takeo Kanade,et al.  A real time system for robust 3D voxel reconstruction of human motions , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  Alberto Menache,et al.  Understanding Motion Capture for Computer Animation and Video Games , 1999 .

[21]  Wojciech Matusik,et al.  Polyhedral Visual Hulls for Real-Time Rendering , 2001, Rendering Techniques.

[22]  Li-Chen Fu,et al.  A framework for human pose estimation by integrating data-driven Markov chain Monte Carlo with multi-objective evolutionary algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[23]  Xiaoqin Zhang,et al.  Sequential particle swarm optimization for visual tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Pascal Fua,et al.  Articulated Soft Objects for Multiview Shape and Motion Capture , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[26]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  G Ferrigno,et al.  Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation. , 2005, Journal of biomechanics.

[28]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[29]  Yee-Hong Yang,et al.  First Sight: A Human Body Outline Labeling System , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[31]  Richard Szeliski,et al.  Rapid octree construction from image sequences , 1993 .

[32]  Behzad Dariush,et al.  Human motion analysis for biomechanics and biomedicine , 2003, Machine Vision and Applications.

[33]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[34]  Luc Van Gool,et al.  Full body tracking from multiple views using stochastic sampling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  Nassir Navab,et al.  Efficient visual hull computation for real-time 3D reconstruction using CUDA , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[36]  Emanuele Trucco,et al.  Dynamic body posture tracking using evolutionary optimisation , 2005 .

[37]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[38]  Stefano Corazza,et al.  Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[40]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Ronald Poppe,et al.  Vision-based human motion analysis: An overview , 2007, Comput. Vis. Image Underst..

[42]  Christopher M. Bishop,et al.  Non-linear Bayesian Image Modelling , 2000, ECCV.

[43]  Larry S. Davis,et al.  3-D model-based tracking of humans in action: a multi-view approach , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Hans-Peter Seidel,et al.  Optimization and Filtering for Human Motion Capture , 2010, International Journal of Computer Vision.

[46]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[47]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..