Time‐dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data

Spatial and temporal variations of aseismic fault creep influence the size and timing of large earthquakes along partially coupled faults. To solve for a time‐dependent model of creep on the Hayward fault, we invert 18 years of surface deformation data (1992–2010), obtained by interferometric processing of 52 and 50 SAR images acquired by the ERS1/2 and Envisat satellites, respectively, and surface creep data obtained at 19 alinement and 4 creepmeter stations. For multi‐temporal analysis of the SAR data we developed a method for identifying stable pixels using wavelet multi‐resolution analysis. We also implement a variety of wavelet‐based filters for reducing the effects of environmental artifacts. Using a reweighted least squares approach, we inverted the interferometric data to generate a time series of surface deformation over the San Francisco Bay Area with a precision of better than a few millimeters. To jointly invert the InSAR displacement time series and the surface creep data for a time‐dependent model of fault creep, we use a robust inversion approach combined with a Kalman filter. The time‐dependent model constrains a zone of high slip deficit that may represent the locked rupture asperity of past and future M≈7 earthquakes. We identify several additional temporal variations in creep rate along the Hayward fault, the most important one being a zone of accelerating slip just northwest of the major locked zone. We estimate that a slip‐rate deficit equivalent to Mw 6.3–6.8 has accumulated on the fault, since the last event in 1868.

[1]  Manoochehr Shirzaei,et al.  A Wavelet-Based Multitemporal DInSAR Algorithm for Monitoring Ground Surface Motion , 2013, IEEE Geoscience and Remote Sensing Letters.

[2]  B. Meade,et al.  Geodetic constraints on San Francisco Bay Area fault slip rates and potential seismogenic asperities on the partially creeping Hayward fault , 2012 .

[3]  J. Boatwright,et al.  Long‐Term Creep Rates on the Hayward Fault: Evidence for Controls on the Size and Frequency of Large Earthquakes , 2012 .

[4]  Manoochehr Shirzaei,et al.  Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms , 2012 .

[5]  Gerassimos A. Papadopoulos,et al.  OPERATIONAL EARTHQUAKE FORECASTING. State of Knowledge and Guidelines for Utilization , 2011 .

[6]  Paul Wessel,et al.  Open radar interferometry software for mapping surface Deformation , 2011 .

[7]  Thomas R. Walter,et al.  Estimating the Effect of Satellite Orbital Error Using Wavelet-Based Robust Regression Applied to InSAR Deformation Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[8]  K. Johnson,et al.  Arrest and recovery of frictional creep on the southern Hayward fault triggered by the 1989 Loma Prieta, California, earthquake and implications for future earthquakes , 2011 .

[9]  Andrew K. Chan,et al.  Fundamentals of Wavelets: Theory, Algorithms, and Applications , 2011 .

[10]  Riccardo Lanari,et al.  Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San Francisco Bay Area , 2011, IEEE Geoscience and Remote Sensing Letters.

[11]  Yngvar Larsen,et al.  InSAR Deformation Time Series Using an $L_{1}$ -Norm Small-Baseline Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Robert W. Graves,et al.  Ground-motion modeling of Hayward fault scenario earthquakes, part I: Construction of the suite of scenarios , 2010 .

[13]  Thomas R. Walter,et al.  Time‐dependent volcano source monitoring using interferometric synthetic aperture radar time series: A combined genetic algorithm and Kalman filter approach , 2010 .

[14]  T. Guilderson,et al.  Evidence for a Twelfth Large Earthquake on the Southern Hayward Fault in the Past 1900 Years , 2010 .

[15]  Thomas R. Walter,et al.  Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data , 2009 .

[16]  Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake , 2008 .

[17]  Kaj M. Johnson,et al.  A Fully Bayesian Inversion for Spatial Distribution of Fault Slip with Objective Smoothing , 2008 .

[18]  Brendan J. Meade,et al.  Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space , 2007, Comput. Geosci..

[19]  Riccardo Lanari,et al.  Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California , 2007 .

[20]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[21]  Wei Guo,et al.  Noise Smoothing for Nonlinear Time Series Using Wavelet Soft Threshold , 2007, IEEE Signal Processing Letters.

[22]  George E. Hilley,et al.  Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis , 2006 .

[23]  A. Ferretti,et al.  Kinematics, asperities and seismic potential of the Hayward fault, California from ERS and RADARSAT PS-InSAR , 2006 .

[24]  R. Bürgmann,et al.  The Effect of Elastic Layering on Inversions of GPS Data for Coseismic Slip and Resulting Stress Changes: Strike-Slip Earthquakes , 2005 .

[25]  Robert M. Nadeau,et al.  Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data , 2005 .

[26]  Antonio Pepe,et al.  On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique , 2005, IEEE Geoscience and Remote Sensing Letters.

[27]  M. A. D'Alessio,et al.  Slicing up the San Francisco Bay Area : Block kinematics and fault slip rates from GPS-derived surface velocities , 2005 .

[28]  P. J. Huber Robust Statistics: Huber/Robust Statistics , 2005 .

[29]  S. Mazzotti,et al.  Variability of Near-Term Probability for the Next Great Earthquake on the Cascadia Subduction Zone , 2004 .

[30]  R. Nadeau,et al.  Periodic Pulsing of Characteristic Microearthquakes on the San Andreas Fault , 2004, Science.

[31]  K. Furlong,et al.  Fault creep and microseismicity on the Hayward fault, California: Implications for asperity size , 2003 .

[32]  Alireza Amiri-Simkooei,et al.  Formulation of L1 norm minimization in Gauss-Markov models , 2003 .

[33]  K. Furlong,et al.  Numerical modeling of strike-slip creeping faults and implications for the Hayward fault, California , 2003 .

[34]  Carlos López-Martínez,et al.  Modeling and reduction of SAR interferometric phase noise in the wavelet domain , 2002, IEEE Trans. Geosci. Remote. Sens..

[35]  Gregory C. Beroza,et al.  High‐resolution image of Calaveras Fault seismicity , 2002 .

[36]  T. Parsons Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis , 2002 .

[37]  H. Zebker,et al.  Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements , 2002 .

[38]  J. Kusche,et al.  Regularization of geopotential determination from satellite data by variance components , 2002 .

[39]  Felix Waldhauser,et al.  Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations , 2002 .

[40]  M. Wyss Locked and creeping patches along the Hayward Fault, California , 2001 .

[41]  R. Simpson,et al.  Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep , 2001 .

[42]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[43]  Renzo L. Ricca,et al.  An introduction to the geometry and topology of fluid flows , 2001 .

[44]  R. Langevin Differential Geometry of Curves and Surfaces , 2001 .

[45]  R. Bürgmann,et al.  Earthquake potential along the northern hayward fault, california , 2000, Science.

[46]  T. McEvilly,et al.  Fault slip rates at depth from recurrence intervals of repeating microearthquakes , 1999, Science.

[47]  M. Costantini,et al.  A generalized phase unwrapping approach for sparse data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[48]  F. Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[49]  J. Lienkaemper,et al.  New Evidence Doubles the Seismic Potential of the Hayward Fault , 1998 .

[50]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[51]  Konstantinos Papathanassiou,et al.  A new technique for noise filtering of SAR interferometric phase images , 1998, IEEE Trans. Geosci. Remote. Sens..

[52]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[53]  T. Toppozada,et al.  Re-evaluation of the 1836 “Hayward fault” and the 1838 San Andreas fault earthquakes , 1998, Bulletin of the Seismological Society of America.

[54]  R. Simpson,et al.  Creep Response of the Hayward Fault to Stress Changes Caused by the Loma Prieta Earthquake , 1997 .

[55]  R. Bilham,et al.  Subsurface creep on the Hayward Fault, Fremont, California , 1997 .

[56]  J. Lienkaemper,et al.  Revised long-term creep rates on the Hayward Fault, Alameda and Contra Costa Counties, California , 1997 .

[57]  James Bethel,et al.  Basic Concepts of L1 Norm Minimization for Surveying Applications , 1996 .

[58]  P. Segall,et al.  Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data , 1996 .

[59]  G. King,et al.  STATIC STRESS CHANGES AND THE TRIGGERING OF EARTHQUAKES , 1994 .

[60]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[61]  J. C. Savage,et al.  Inferred depth of creep on the Hayward Fault, central California , 1993 .

[62]  M. Lisowski,et al.  Historic creep rate and potential for seismic slip along the Hayward Fault, California , 1991 .

[63]  Chris Marone,et al.  Frictional behavior and constitutive modeling of simulated fault gouge , 1990 .

[64]  D. O’Leary Robust regression computation computation using iteratively reweighted least squares , 1990 .

[65]  Chris Marone,et al.  The depth of seismic faulting and the upper transition from stable to unstable slip regimes , 1988 .

[66]  P. Segall,et al.  Earthquake deformation cycle on the San Andreas Fault near Parkfield, California , 1987 .

[67]  Edward J. Krakiwsky,et al.  Geodesy, the concepts , 1982 .

[68]  J. Logan Creep, stable sliding, and premonitory slip , 1978 .

[69]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[70]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[71]  Edward M. Mikhail,et al.  Observations And Least Squares , 1983 .

[72]  A. Bjerhammar,et al.  Theory Of Errors And Generalized Matrix Inverses , 1973 .

[73]  A. Gorbovsky [The generation]. , 1970, ADM; revista de la Asociacion Dental Mexicana.

[74]  Dianne P. O’LEARYt ROBUST REGRESSION COMPUTATION USING ITERATIVELY REWEIGHTED LEAST SQUARES * , 2022 .