Conversion of a Defect Pyrochlore into a Double Perovskite via High-Pressure, High-Temperature Reduction of Te6.

High-pressure, high-temperature reaction conditions can be useful to stabilize metastable polymorphs of complex transition metal oxides. We successfully prepare a new defect pyrochlore Pb2FeTeO6.5 with B-site disordered Fe and Te cations under ambient conditions. Treatment of this material under 8 GPa and 950 °C results in a reductive transformation into the B-site cation-ordered double perovskite Pb2FeTeO6. Mössbauer and EELS spectroscopy confirm the iron cations are in the +3 oxidation state in both phases indicating that this transformation proceeds via reduction of the tellurium cations under apparently oxidizing conditions. This reaction demonstrates that for a suitably chosen system, it is possible to carry out chemical reactions under pressure in unexpected ways.

[1]  Přemysl Vaněk,et al.  Pb2MnTeO6 Double Perovskite: An Antipolar Anti-ferromagnet. , 2016, Inorganic chemistry.

[2]  Y. Shimakawa Crystal and magnetic structures of CaCu3Fe4O12 and LaCu3Fe4O12: distinct charge transitions of unusual high valence Fe , 2015 .

[3]  Takafumi D. Yamamoto,et al.  Hydride Reductions of Transition Metal Oxides , 2013 .

[4]  D. Gianolio,et al.  SrFe0.5Ru0.5O2: square-planar Ru2+ in an extended oxide. , 2013, Journal of the American Chemical Society.

[5]  A. Sleight,et al.  CsTe2O(6-x): novel mixed-valence tellurium oxides with framework-deficient pyrochlore-related structure. , 2011, Inorganic chemistry.

[6]  A. Sleight,et al.  Structural studies and electrical properties of Cs/Al/Te/O phases with the pyrochlore structure. , 2011, Inorganic chemistry.

[7]  P. Nordblad,et al.  Structural and magnetic properties of the ordered perovskite Pb2CoTeO6. , 2010, Dalton transactions.

[8]  M. Hayward,et al.  The topotactic reduction of Sr3Fe2O5Cl2-square planar Fe(II) in an extended oxyhalide. , 2010, Inorganic chemistry.

[9]  A. Sleight,et al.  First Observation of Electronic Conductivity in Mixed-Valence Tellurium Oxides , 2009 .

[10]  H. Kageyama,et al.  Infinite-layer iron oxide with a square-planar coordination , 2007, Nature.

[11]  R. Astier,et al.  Structural evolution in iron tellurates , 2007 .

[12]  N. Barrier,et al.  The mixed valent tellurate SrTe3O8: Electronic lone pair effect of Te4+ , 2006 .

[13]  M. Jansen,et al.  Neue Silber(I)‐oxotellurate(IV/VI) , 2005 .

[14]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[15]  A. Navrotsky Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures , 1998 .

[16]  B. Raveau,et al.  Colossal magnetoresistance, charge ordering and related properties of manganese oxides , 1998 .

[17]  B. Kennedy Oxygen Vacancies in Pyrochlore Oxides: Powder Neutron Diffraction Study of Pb2Ir2O6.5and Bi2Ir2O7−y , 1996 .

[18]  J. Pannetier,et al.  Oxygen-vacancy disordering revised in the defect pyrochlores Pb2(Cr0.5Sb1.5)O6.5 and Pb2(TiSb)O6.5 , 1989 .

[19]  L. H. Bowen,et al.  Mössbauer spectroscopy. , 1988, Analytical chemistry.

[20]  A. Cheetham,et al.  Crystal structures of mixed-valency and mixed-metal salts A2MIII0.5SbV0.5X6 (A=Rb, Cs; M=Sb, Bi, In, Tl, Fe, Rh; X=Cl, Br). A powder neutron diffraction study , 1985 .

[21]  M. E. Leonowicz,et al.  Neutron diffraction investigation of ordered oxygen vacancies in the defect pyrochlores, Pb2Ru2O6.5 and PbT1Nb2O6.5 , 1984 .

[22]  M. Takano,et al.  Charge disproportionation in CaFeO3 studied with the Mössbauer effect , 1977 .

[23]  O. J. Kleppa,et al.  Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2 , 1977 .

[24]  A. Sleight,et al.  Crystal structure of Ba2Bi3+Bi5+O6 , 1976 .

[25]  Y. Endoh,et al.  A new high pressure phase of MnTiO3 and its magnetic property , 1969 .

[26]  P. M. Raccah,et al.  Pb2M2O7−x (M = Ru, Ir, Re) — Preparation and properties of oxygen deficient pyrochlores , 1969 .