A detailed three‐dimensional quantum study of the Li+FH reaction

Accurate quantum reactive scattering calculations in the full three‐dimensional physical space have been carried out for the Li+FH reaction at zero total angular momentum using the adiabatically adjusting principal axis of inertia hyperspherical coordinate formalism. The procedures for fitting the potential energy surface, calculating the surface functions, and propagating the solutions in a coupled channel treatment are given and discussed. Features of the resulting reactive probability plots are analyzed, and simple explanations of a number of the quantum resonance and oscillatory features are found.

[1]  Antonio Laganà,et al.  Accurate 3D quantum reactive probabilities of Li+FH , 1993 .

[2]  J. N. Murrell,et al.  Analytical potentials for triatomic molecules: VII. Application to repulsive surfaces , 1980 .

[3]  Antonio Laganà,et al.  A comparison of time‐dependent and time‐independent quantum reactive scattering—Li+HF→LiF+H model calculations , 1993 .

[4]  Hans-Joachim Werner,et al.  Integral and differential cross sections for the Li+HF→LiF+H process. A comparison between jz quantum mechanical and experimental results , 1994 .

[5]  Antonio Laganà,et al.  A rotating bond order formulation of the atom diatom potential energy surface , 1991 .

[6]  F. Stienkemeier,et al.  Evidence for the deep potential well of Li+HF from backward glory scattering , 1993 .

[7]  I. Noorbatcha,et al.  Vibrational threshold equal to the barrier height for an endothermic reaction: Li+FH→LiF+H on an ab initio potential‐energy surface , 1982 .

[8]  M. Paniagua,et al.  Accurate and model collinear reactive probabilities of the Mg+FH reaction , 1990 .

[9]  Antonio Laganà,et al.  A quasiclassical trajectory test for a potential energy surface of the Li+HF reaction , 1982 .

[10]  J. Hasted,et al.  Physics of Electronic and Atomic Collisions , 1963, Nature.

[11]  Gregory A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. VI. Analytic basis method for surface functions , 1993 .

[12]  A. Laganà On the Franck–Condon behavior of the H+Cl2 reaction , 1987 .

[13]  B. R. Johnson The renormalized Numerov method applied to calculating bound states of the coupled‐channel Schroedinger equation , 1978 .

[14]  E. Garcia,et al.  A fit of the potential energy surface of the LiHF system , 1984 .

[15]  J. Whitehead,et al.  Quasiclassical dynamics of light+heavy–heavy and heavy+heavy–light atom reactions: The reaction X+F2→XF+F(X = Mu, H) , 1981 .

[16]  R. Levine,et al.  On the all channels representation of the potential energy surface for reactive collisions , 1989 .

[17]  Antonio Laganà,et al.  An accurate evaluation of the stationary points of the LiFH potential energy surface , 1989 .

[18]  Antonio Laganà,et al.  A bond-order LiFH potential energy surface for 3D quantum-mechanical calculations , 1988 .

[19]  G. G. Balint-Kurti,et al.  Potential energy surfaces for simple chemical reactions:. Application of valence-bond techniques to the Li + HF → LiF + H reaction , 1977 .

[20]  Antonio Laganà,et al.  Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules , 1989 .

[21]  Christopher H. Becker,et al.  Study of the reaction dynamics of Li+HF, HCl by the crossed molecular beams method , 1980 .

[22]  A. Laganaà,et al.  Potential surface graphical study for chemical reactions , 1980, Comput. Chem..

[23]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. III. Small θ behavior and corrigenda , 1989 .

[24]  R. T. Pack,et al.  Rotational excitation in molecular collisions: A strong coupling approximation , 1970 .

[25]  R. Wyatt,et al.  Quantum dynamics of the three‐dimensional Li+HF reaction: The bending corrected rotating nonlinear model , 1987 .

[26]  R. T. Pack Coordinates for an optimum CS approximation in reactive scattering , 1984 .

[27]  M. Baer Weak and strong interactions in chemical reactions , 1975 .

[28]  H. Schaefer,et al.  Abinitio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces , 1984 .

[29]  Antonio Laganà,et al.  Improved infinite order sudden cross sections for the Li+HF reaction , 1988 .

[30]  V. Aquilanti,et al.  Nonadiabatic effects in the hyperspherical description of elementary chemical reactions , 1984 .

[31]  R. Zare,et al.  Indirect information on reactive transition states from conservation of angular momentum , 1991 .

[32]  Henry F. Schaefer,et al.  Potential energy surface for the Li+HF. -->. LiF+H reaction , 1980 .