Non-intersecting Brownian Bridges in the Flat-to-Flat Geometry

We study N vicious Brownian bridges propagating from an initial configuration {a1 < a2 < . . . < aN} at time t = 0 to a final configuration {b1 < b2 < . . . < bN} at time t = tf , while staying non-intersecting for all 0 ≤ t ≤ tf . We first show that this problem can be mapped to a nonintersecting Dyson’s Brownian bridges with Dyson index β = 2. For the latter we derive an exact effective Langevin equation that allows to generate very efficiently the vicious bridge configurations. In particular, for the flat-to-flat configuration in the large N limit, where ai = bi = (i − 1)/N , for i = 1, · · · , N , we use this effective Langevin equation to derive an exact Burgers’ equation (in the inviscid limit) for the Green’s function and solve this Burgers’ equation for arbitrary time 0 ≤ t ≤ tf . At certain specific values of intermediate times t, such as t = tf/2, t = tf/3 and t = tf/4 we obtain the average density of the flat-to-flat bridge explicitly. We also derive explicitly how the two edges of the average density evolve from time t = 0 to time t = tf . Finally, we discuss connections to some well known problems, such as the Chern-Simons model, the related Stieltjes-Wigert orthogonal polynomials and the Borodin-Muttalib ensemble of determinantal point processes.

[1]  A. Guionnet,et al.  Asymptotic Expansion of a Partition Function Related to the Sinh-model , 2014, 1412.7721.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  K. Muttalib Random matrix models with additional interactions , 1995 .

[4]  P. Forrester,et al.  Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition , 2015, 1503.07955.

[5]  S. Majumdar,et al.  Periodic Airy process and equilibrium dynamics of edge fermions in a trap , 2017, 1702.06931.

[6]  Ú. Oswald The Cubic Equation , 2009 .

[7]  Chern-Simons Theory, Matrix Integrals, and Perturbative Three-Manifold Invariants , 2002, hep-th/0207096.

[8]  Michael E. Fisher,et al.  Commensurate melting, domain walls, and dislocations , 1984 .

[9]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[10]  M. Nowak,et al.  Diffusion in the space of complex Hermitian matrices - microscopic properties of the averaged characteristic polynomial and the averaged inverse characteristic polynomial , 2014, 1405.5244.

[11]  On characteristic polynomials for a generalized chiral random matrix ensemble with a source , 2017, 1711.07061.

[12]  Satya N Majumdar,et al.  Nonintersecting Brownian interfaces and Wishart random matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  B. M. Fulk MATH , 1992 .

[14]  J. Bouchaud,et al.  Invariant beta ensembles and the Gauss-Wigner crossover. , 2012, Physical review letters.

[15]  Peter J. Forrester,et al.  Reunion Probability of N Vicious Walkers: Typical and Large Fluctuations for Large N , 2012, 1210.4438.

[16]  J. Bouchaud,et al.  Instanton approach to large N Harish-Chandra-Itzykson-Zuber integrals. , 2014, Physical review letters.

[17]  Alexei Borodin Biorthogonal ensembles , 1998 .

[18]  A. Guionnet First Order Asymptotics of Matrix Integrals; A Rigorous Approach Towards the Understanding of Matrix Models , 2002, math/0211131.

[19]  Nicolas Bonichon,et al.  Watermelon uniform random generation with applications , 2003, Theor. Comput. Sci..

[20]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[21]  Makoto Katori,et al.  Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems , 2004 .

[22]  S. Majumdar,et al.  Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary , 2019, Journal of Statistical Physics.

[23]  H. Orland Generating transition paths by Langevin bridges. , 2011, The Journal of chemical physics.

[24]  K. Allegaert,et al.  (Preprint) , 2018 .

[25]  Universal shocks in random matrix theory. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. Majumdar,et al.  Exact distribution of the maximal height of p vicious walkers. , 2008, Physical review letters.

[27]  Michael E. Fisher,et al.  Walks, walls, wetting, and melting , 1984 .

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  A. Borodin,et al.  Maximum of Dyson Brownian motion and non-colliding systems with a boundary , 2009, 0905.3989.

[30]  E. Strahov,et al.  Averages of Characteristic Polynomials in Random Matrix Theory , 2004 .

[31]  Samuel Karlin,et al.  COINCIDENT PROPERTIES OF BIRTH AND DEATH PROCESSES , 1959 .

[32]  N. H. Bingham,et al.  Seminar on Stochastic Processes , 1993 .

[33]  Edouard Brézin,et al.  Applications of random matrices in physics , 2006 .

[34]  Grégory Schehr,et al.  Distribution of the time at which N vicious walkers reach their maximal height. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. Tierz,et al.  Chern–Simons matrix models, two-dimensional Yang–Mills theory and the Sutherland model , 2010, 1003.1228.

[36]  P. G. de Gennes,et al.  Soluble Model for Fibrous Structures with Steric Constraints , 1968 .

[37]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[38]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[39]  Radosław Szmytkowski On the derivatives ∂2Pν(z)/∂ν2 and ∂Qν (z)/∂ν of the Legendre functions with respect to their degrees , 2017 .

[40]  Chern-Simons matrix models and Stieltjes-Wigert polynomials , 2006, hep-th/0609167.

[41]  Craig A. Tracy,et al.  Nonintersecting Brownian Excursions , 2006, math/0607321.

[42]  Hugo Touchette,et al.  Nonequilibrium microcanonical and canonical ensembles and their equivalence. , 2013, Physical review letters.

[43]  Yuta Takahashi,et al.  Noncolliding Brownian Motion with Drift and Time-Dependent Stieltjes-Wigert Determinantal Point Process , 2012, 1207.4351.

[44]  J. L. Doob,et al.  Conditional brownian motion and the boundary limits of harmonic functions , 1957 .

[45]  Hydrodynamical spectral evolution for random matrices , 2015, 1507.07274.

[46]  P. Forrester,et al.  Non-intersecting Brownian walkers and Yang–Mills theory on the sphere , 2010, 1009.2362.

[47]  G. Schehr,et al.  Extremal statistics of curved growing interfaces in 1+1 dimensions , 2010, 1004.0141.

[48]  Anthony J. Guttmann,et al.  Vicious walkers, friendly walkers and Young tableaux: II. With a wall , 2000 .

[49]  S. Majumdar,et al.  Effective Langevin equations for constrained stochastic processes , 2015, 1503.02639.