A STABLE, ACCURATE METHODOLOGY FOR HIGH MACH NUMBER, STRONG MAGNETIC FIELD MHD TURBULENCE WITH ADAPTIVE MESH REFINEMENT: RESOLUTION AND REFINEMENT STUDIES

Performing a stable, long-duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and constrained transport electromotive force averaging schemes that can meet this challenge, and using this strategy, we have developed a new adaptive mesh refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma ?0 of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers () and smaller plasma beta (?0 = 0.0067) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulations show that the turbulent dissipation coefficient for supersonic MHD turbulence is about 0.5, in agreement with unigrid simulations.

[1]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[2]  Peng Wang,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF DISK GALAXY FORMATION: THE MAGNETIZATION OF THE COLD AND WARM MEDIUM , 2007, 0712.0872.

[3]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[4]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[5]  R. Teyssier,et al.  A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .

[6]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[7]  K. Waagan,et al.  A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..

[8]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[9]  P. Londrillo,et al.  On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .

[10]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[11]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[12]  Richard I. Klein,et al.  Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds , 1999 .

[13]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[14]  Embedding Lagrangian Sink Particles in Eulerian Grids , 2003, astro-ph/0312612.

[15]  Daniel F. Martin,et al.  A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .

[16]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[17]  Edouard Audit,et al.  Numerical Modeling of Space Plasma Flows: ASTRONUM-2008 , 2008 .

[18]  Michael L. Norman,et al.  MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVÉNIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT , 2010, 1008.2402.

[19]  M. L. Norman,et al.  Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS-MP , 2005, astro-ph/0511545.

[20]  The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[21]  Hirohiko Masunaga,et al.  A Radiation Hydrodynamic Model for Protostellar Collapse. I. The First Collapse , 1998 .

[22]  Ying Ying Zhang,et al.  Conclusions and Discussions , 2011 .

[23]  Richard I. Klein,et al.  An unsplit, cell-centered Godunov method for ideal MHD - eScholarship , 2003 .

[24]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[25]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[26]  Richard I. Klein,et al.  Equations and Algorithms for Mixed-frame Flux-limited Diffusion Radiation Hydrodynamics , 2006 .

[27]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[28]  Richard I. Klein,et al.  Self-gravitational Hydrodynamics with Three-dimensional Adaptive Mesh Refinement: Methodology and Applications to Molecular Cloud Collapse and Fragmentation , 1998 .

[29]  Christian Klingenberg,et al.  A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests , 2011, J. Comput. Phys..

[30]  David Collins,et al.  COMPARING NUMERICAL METHODS FOR ISOTHERMAL MAGNETIZED SUPERSONIC TURBULENCE , 2011, 1103.5525.

[31]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[32]  M. Norman,et al.  Simulating supersonic turbulence in magnetized molecular clouds , 2009, 0908.0378.

[33]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[34]  Sebastian Kern,et al.  Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas , 2008, 0809.1321.

[35]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[36]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[37]  Michael L. Norman,et al.  Adaptive Mesh Refinement for Supersonic Molecular Cloud Turbulence , 2004, astro-ph/0411626.

[38]  Dongsu Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .

[39]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[40]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[41]  Mitsuo Yokokawa,et al.  Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .

[42]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[43]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[44]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[45]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[46]  Energy transfer and bottleneck effect in turbulence , 2005, nlin/0510026.

[47]  C. Berthon,et al.  Stability of the MUSCL Schemes for the Euler Equations , 2005 .

[48]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[49]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[50]  Enrico Camporeale,et al.  Numerical modeling of space plasma flows , 2009 .

[51]  R. LeVeque Numerical methods for conservation laws , 1990 .

[52]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[53]  J. Stone,et al.  DISSIPATION AND HEATING IN SUPERSONIC HYDRODYNAMIC AND MHD TURBULENCE , 2008, 0809.4005.

[54]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[55]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[56]  R. Klein,et al.  Sub-Alfvénic Nonideal MHD Turbulence Simulations with Ambipolar Diffusion. I. Turbulence Statistics , 2008, 0805.0597.

[57]  Bertrand Alessandrini,et al.  An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..

[58]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .