A STABLE, ACCURATE METHODOLOGY FOR HIGH MACH NUMBER, STRONG MAGNETIC FIELD MHD TURBULENCE WITH ADAPTIVE MESH REFINEMENT: RESOLUTION AND REFINEMENT STUDIES
暂无分享,去创建一个
Daniel F. Martin | Richard I. Klein | Pak Shing Li | Christopher F. McKee | R. Klein | C. McKee | P. Li
[1] M. Norman,et al. The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.
[2] Peng Wang,et al. MAGNETOHYDRODYNAMIC SIMULATIONS OF DISK GALAXY FORMATION: THE MAGNETIZATION OF THE COLD AND WARM MEDIUM , 2007, 0712.0872.
[3] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[4] Richard I. Klein,et al. The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .
[5] R. Teyssier,et al. A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .
[6] R. Klessen,et al. Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.
[7] K. Waagan,et al. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..
[8] P. Teuben,et al. Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.
[9] P. Londrillo,et al. On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .
[10] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[11] B. Fryxell,et al. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .
[12] Richard I. Klein,et al. Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds , 1999 .
[13] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.
[14] Embedding Lagrangian Sink Particles in Eulerian Grids , 2003, astro-ph/0312612.
[15] Daniel F. Martin,et al. A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .
[16] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[17] Edouard Audit,et al. Numerical Modeling of Space Plasma Flows: ASTRONUM-2008 , 2008 .
[18] Michael L. Norman,et al. MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVÉNIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT , 2010, 1008.2402.
[19] M. L. Norman,et al. Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS-MP , 2005, astro-ph/0511545.
[20] The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.
[21] Hirohiko Masunaga,et al. A Radiation Hydrodynamic Model for Protostellar Collapse. I. The First Collapse , 1998 .
[22] Ying Ying Zhang,et al. Conclusions and Discussions , 2011 .
[23] Richard I. Klein,et al. An unsplit, cell-centered Godunov method for ideal MHD - eScholarship , 2003 .
[24] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[25] E. Ostriker,et al. Theory of Star Formation , 2007, 0707.3514.
[26] Richard I. Klein,et al. Equations and Algorithms for Mixed-frame Flux-limited Diffusion Radiation Hydrodynamics , 2006 .
[27] James M. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..
[28] Richard I. Klein,et al. Self-gravitational Hydrodynamics with Three-dimensional Adaptive Mesh Refinement: Methodology and Applications to Molecular Cloud Collapse and Fragmentation , 1998 .
[29] Christian Klingenberg,et al. A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests , 2011, J. Comput. Phys..
[30] David Collins,et al. COMPARING NUMERICAL METHODS FOR ISOTHERMAL MAGNETIZED SUPERSONIC TURBULENCE , 2011, 1103.5525.
[31] Dinshaw Balsara,et al. Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .
[32] M. Norman,et al. Simulating supersonic turbulence in magnetized molecular clouds , 2009, 0908.0378.
[33] Richard M. Crutcher,et al. Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .
[34] Sebastian Kern,et al. Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas , 2008, 0809.1321.
[35] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[36] B. V. Leer,et al. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .
[37] Michael L. Norman,et al. Adaptive Mesh Refinement for Supersonic Molecular Cloud Turbulence , 2004, astro-ph/0411626.
[38] Dongsu Ryu,et al. Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .
[39] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.
[40] J. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.
[41] Mitsuo Yokokawa,et al. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .
[42] Robert H. Kraichnan,et al. Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .
[43] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[44] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[45] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[46] Energy transfer and bottleneck effect in turbulence , 2005, nlin/0510026.
[47] C. Berthon,et al. Stability of the MUSCL Schemes for the Euler Equations , 2005 .
[48] K. Kusano,et al. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .
[49] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[50] Enrico Camporeale,et al. Numerical modeling of space plasma flows , 2009 .
[51] R. LeVeque. Numerical methods for conservation laws , 1990 .
[52] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[53] J. Stone,et al. DISSIPATION AND HEATING IN SUPERSONIC HYDRODYNAMIC AND MHD TURBULENCE , 2008, 0809.4005.
[54] Xiangxiong Zhang,et al. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..
[55] Andrea Mignone,et al. A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..
[56] R. Klein,et al. Sub-Alfvénic Nonideal MHD Turbulence Simulations with Ambipolar Diffusion. I. Turbulence Statistics , 2008, 0805.0597.
[57] Bertrand Alessandrini,et al. An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..
[58] P. Roe. CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .