Purkinje Images: Conveying Different Content for Different Luminance Adaptations in a Single Image

Providing multiple meanings in a single piece of art has always been intriguing to both artists and observers. We present Purkinje images, which have different interpretations depending on the luminance adaptation of the observer. Finding such images is an optimization that minimizes the sum of the distance to one reference image in photopic conditions and the distance to another reference image in scotopic conditions. To model the shift of image perception between day and night vision, we decompose the input images into a Laplacian pyramid. Distances under different observation conditions in this representation are independent between pyramid levels and pixel positions and become matrix multiplications. The optimal pixel colour can be found by inverting a small, per‐pixel linear system in real time on a GPU. Finally, two user studies analyze our results in terms of the recognition performance and fidelity with respect to the reference images.

[1]  Markus H. Gross,et al.  The magic lens , 2012, ACM Trans. Graph..

[2]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[3]  Hans-Peter Seidel,et al.  A perceptual model for disparity , 2011, ACM Trans. Graph..

[4]  Manuel Menezes de Oliveira Neto,et al.  An Efficient Naturalness-Preserving Image-Recoloring Method for Dichromats , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  Joshi Neel,et al.  画像の例を用いた個人写真の強調 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2010 .

[6]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[7]  Gary W. Meyer,et al.  A frequency based ray tracer , 1995, SIGGRAPH.

[8]  James F. O'Brien,et al.  Perceptually based tone mapping for low-light conditions , 2011, SIGGRAPH 2011.

[9]  Wolfgang Heidrich,et al.  Display considerations for night and low-illumination viewing , 2009, APGV '09.

[10]  Frédo Durand,et al.  Interactive Tone Mapping , 2000, Rendering Techniques.

[11]  Daniel Cohen-Or,et al.  Camouflage images , 2010, SIGGRAPH 2010.

[12]  Garrett M. Johnson,et al.  Color Imaging: Fundamentals and Applications , 2008 .

[13]  M. Alexa,et al.  Reliefs as images , 2010, ACM Trans. Graph..

[14]  S. Hecht THE RELATION BETWEEN VISUAL ACUITY AND ILLUMINATION , 1928, The Journal of general physiology.

[15]  M. Barris Vision and Art: The Biology of Seeing , 2005 .

[16]  Alejo Hausner,et al.  Simulating decorative mosaics , 2001, SIGGRAPH.

[17]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[18]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[19]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[20]  Vidya Setlur,et al.  Is that a smile?: gaze dependent facial expressions , 2004, NPAR '04.

[21]  James F. O'Brien,et al.  Perceptually based tone mapping for low-light conditions , 2011, ACM Trans. Graph..

[22]  Peter G. J. Barten The Square Root Integral (SQRI): A New Metric To Describe The Effect Of Various Display Parameters On Perceived Image Quality , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[23]  George Wolberg,et al.  Image morphing: a survey , 1998, The Visual Computer.

[24]  Markus H. Gross,et al.  Perceptually-based compensation of light pollution in display systems , 2011, APGV '11.

[25]  Neil A. Dodgson,et al.  Cross Dissolve Without Cross Fade: Preserving Contrast, Color and Salience in Image Compositing , 2006, Comput. Graph. Forum.

[26]  Lihi Zelnik-Manor,et al.  Puzzle‐like Collage , 2010, Comput. Graph. Forum.

[27]  F. W. Edridge-Green,et al.  Test for Colour Blindness , 1895 .

[28]  Ralph R. Martin,et al.  Hidden images , 2011, NPAR '11.

[29]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[30]  G. H. Jacobs,et al.  Electrophysiological measurements of spectral mechanisms in the retinas of two cervids: white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama) , 1994, Journal of Comparative Physiology A.

[31]  Joel Pokorny,et al.  Rod contributions to color perception: Linear with rod contrast , 2007, Vision Research.

[32]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[33]  Daniel Cohen-Or,et al.  Emerging images , 2009, SIGGRAPH 2009.

[34]  Fabio Pellacini,et al.  Jigsaw image mosaics , 2002, ACM Trans. Graph..

[35]  Antonio Torralba,et al.  To appear in the ACM SIGGRAPH conference proceedings Hybrid images , 2006 .

[36]  G Wald,et al.  HUMAN VISION AND THE SPECTRUM. , 1945, Science.

[37]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[38]  Scott Schaefer,et al.  Image deformation using moving least squares , 2006, ACM Trans. Graph..

[39]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[40]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[41]  Françoise Viénot,et al.  Digital video colourmaps for checking the legibility of displays by dichromats , 1999 .

[42]  Xiang Cao,et al.  Enabling concurrent dual views on common LCD screens , 2012, CHI.

[43]  T. Wong,et al.  Camouflage images , 2010, ACM Trans. Graph..

[44]  R. Arnheim Art and Visual Perception, a Psychology of the Creative Eye , 1967 .

[45]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[46]  Hua Huang,et al.  Arcimboldo-like collage using internet images , 2011, ACM Trans. Graph..

[47]  Peter Shirley,et al.  A Spatial Post-Processing Algorithm for Images of Night Scenes , 2002, J. Graphics, GPU, & Game Tools.