Reactive synthesis of hexagonal Ti5P3.16 crystals and their heterogenous nucleating mechanism on primary Si

[1]  Yifan Li,et al.  Absorbing formation mechanism of AlP on TiB2 substrate and their application as high-efficiency nucleating agent in Al-45Si alloy , 2017 .

[2]  G. Han,et al.  Phase control and formation mechanism of Al–Mn(–Fe) intermetallic particles in Mg–Al-based alloys with FeCl3 addition or melt superheating , 2016 .

[3]  Yonghao Zhao,et al.  Study on the evolution processes from TiCx to TiB2 induced by B in Al melt , 2015 .

[4]  Xiangfa Liu,et al.  In-situ synthesis of SiC particles by the structural evolution of TiCx in Al–Si melt , 2014 .

[5]  Tong Gao,et al.  A new Al–Fe–P master alloy designed for application in low pressure casting and its refinement performance on primary Si in A390 alloy at low temperature , 2014 .

[6]  R. Schmid-Fetzer,et al.  Phosphorus in Al–Si cast alloys: Thermodynamic prediction of the AlP and eutectic (Si) solidification sequence validated by microstructure and nucleation undercooling data , 2014 .

[7]  Xiangfa Liu,et al.  The phase transition of ZrP induced by Si in Al–Si melts , 2012 .

[8]  Pengting Li,et al.  Morphological evolution of TiC from octahedron to cube induced by elemental nickel , 2012 .

[9]  H. Ding,et al.  Study of preparation of TiB2 by TiC in Al melts , 2012 .

[10]  Xiangfa Liu,et al.  The improvement of microstructures and mechanical properties of near eutectic Al–Si multicomponent alloy by an Al–8Zr–2P master alloy , 2012 .

[11]  Chong Li,et al.  Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys , 2011 .

[12]  Xiangfa Liu,et al.  Refinement of Hypereutectic Al–Si Alloy by a New Al–Sc–P Master Alloy , 2011, Journal of Inorganic and Organometallic Polymers and Materials.

[13]  Xiangfa Liu,et al.  Refinement of hypereutectic Al–Si alloy by a new Al–Zr–P master alloy , 2010 .

[14]  H. Ding,et al.  Different elements-induced destabilisation of TiC and its application on the grain refinement of Mg–Al alloys , 2009 .

[15]  Xiulin Liu,et al.  Effect of rapid solidification on the microstructure and refining performance of an Al–Si–P master alloy , 2009 .

[16]  Xiangfa Liu,et al.  Re-formation of AlP compound in Al―Si melt , 2009 .

[17]  Xiangfa Liu,et al.  A new technique to modify hypereutectic Al–24%Si alloys by a Si–P master alloy , 2009 .

[18]  Xiangfa Liu,et al.  Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys , 2008 .

[19]  K. Oh,et al.  Effect of Strontium and Phosphorus on Eutectic Al-Si Nucleation and Formation of β-Al5FeSi in Hypoeutectic Al-Si Foundry Alloys , 2008 .

[20]  Guoqun Zhao,et al.  The influence of forming processes on the distribution and morphologies of TiC in Al–Ti–C master alloys , 2007 .

[21]  H. Ding,et al.  A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al–Si alloy , 2007 .

[22]  H. Ding,et al.  A new nucleation mechanism of primary Si by like-peritectic coupling of AlP and Al4C3 in near eutectic Al–Si alloy , 2007 .

[23]  Hong Wang,et al.  Effect of La2O3 in the Al–P–Ti–TiC–La2O3 modifier on primary silicon in hypereutectic Al–Si alloys , 2006 .

[24]  Jian Li,et al.  FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear , 2006 .

[25]  P. Schaffer,et al.  Settling behaviour of different grain refiners in aluminium , 2005 .

[26]  B. S. Murty,et al.  Development of Al-Ti-C grain refiners and study of their grain refining efficiency on Al and Al-7Si alloy , 2005 .

[27]  Q. Jiang,et al.  Effect of new Al–P–Ti–TiC–Y modifier on primary silicon in hypereutectic Al–Si alloys , 2005 .

[28]  R. Mandal,et al.  Evolution of microstructure in spray formed Al–18%Si alloy , 2004 .

[29]  K. Nogita,et al.  Eutectic nucleation in Al-Si alloys , 2004 .

[30]  A. L. Greer,et al.  The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys , 2004 .

[31]  K. Nogita,et al.  Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys. , 2004, Journal of electron microscopy.

[32]  Liu Xiangfa,et al.  Modification Performance of the Al-P Master Alloy for Eutectic and Hypereutectic Al-Si Alloys , 2004 .

[33]  D. StJohn,et al.  Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum-silicon alloys , 2004 .

[34]  A. Sharif,et al.  Study on wear properties of aluminium–silicon piston alloy , 2001 .

[35]  K. Hu,et al.  TiB2/TiC nanocomposite powder fabricated via high energy ball milling , 2001 .

[36]  A. Kennedy,et al.  Reaction in Al–TiC metal matrix composites , 2001 .

[37]  W. M. Rainforth,et al.  Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy , 2001 .

[38]  G. Wen,et al.  Reaction synthesis of TiB2-TiC composites with enhanced toughness , 2001 .

[39]  G. S. Upadhyaya,et al.  Synthesis and sintering of TiB2 and TiB2–TiC composite under high pressure , 2000 .

[40]  M. Allibert,et al.  Solubility and precipitation of AlP in Al–Si melts studied with a temperature controlled filtration technique , 1998 .

[41]  Joonyeon Chang,et al.  Refinement of Cast Microstructure of Hypereutectic Al-Si Alloys Through the Addition of Rare Earth Metals , 1998 .

[42]  B. Cantor,et al.  Heterogeneous nucleation of solidification of Si IN Al-Si and Al-Si-P alloys , 1995 .