Approximate zero-variance simulation

Monte Carlo simulation applies to a wide range of estimation problems, but converges rather slowly in general. Variance reduction techniques can lower the estimation error, sometimes by a large factor, but rarely change the convergence rate of the estimation error. This error usually decreases as the inverse square root of the computational effort, as dictated by the central limit theorem. In theory, there exist simulation estimators with zero variance, i.e., that always provide the exact value. The catch is that these estimators are usually much too difficult (or virtually impossible) to implement. However, there are situations, especially in the context of rare-event simulation, where the zero-variance simulation can be approximated well enough to provide huge efficiency gains. Adaptive versions can even yield a faster convergence rate, including exponential convergence in some cases. This paper gives a brief overview of these methods and discuss their practicality.

[1]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[2]  Marvin K. Nakayama,et al.  General conditions for bounded relative error in simulations of highly reliable Markovian systems , 1996, Advances in Applied Probability.

[3]  S. Juneja,et al.  Rare-event Simulation Techniques : An Introduction and Recent Advances , 2006 .

[4]  P. Dupuis,et al.  Importance Sampling, Large Deviations, and Differential Games , 2004 .

[5]  Paul Glasserman,et al.  Function-approximation-based importance sampling for pricing American options , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[6]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[7]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[8]  Sujin Kim,et al.  Adaptive Control Variates for Finite-Horizon Simulation , 2007, Math. Oper. Res..

[9]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[10]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[11]  Peter W. Glynn,et al.  Approximating Martingales for Variance Reduction in Markov Process Simulation , 2002, Math. Oper. Res..

[12]  James R. Wilson Proof of the antithetic-variates theorem for unbounded functions , 1979 .

[13]  Thomas E. Booth,et al.  Generalized zero-variance solutions and intelligent random numbers , 1987, WSC '87.

[14]  Ward Whitt,et al.  The Asymptotic Efficiency of Simulation Estimators , 1992, Oper. Res..

[15]  Dennis D. Cox,et al.  Adaptive importance sampling on discrete Markov chains , 1999 .

[16]  Pierre L'Ecuyer,et al.  Combination of General Antithetic Transformations and Control Variables , 2003, Math. Oper. Res..

[17]  Fred J. Hickernell My dream quadrature rule , 2003, J. Complex..

[18]  Pierre L'Ecuyer,et al.  A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains , 2006, Oper. Res..

[19]  Charles Leake,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1994 .

[20]  Pierre L'Ecuyer,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .

[21]  P. Shahabuddin,et al.  Chapter 11 Rare-Event Simulation Techniques: An Introduction and Recent Advances , 2006, Simulation.

[22]  D. Cox,et al.  Exponential convergence of adaptive importance sampling for Markov chains , 2000 .

[23]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[24]  Peter W. Glynn,et al.  Simulation in optimization and optimization in simulation: a markov chain perspective on adaptive Monte Carlo algorithms , 2001, WSC '01.

[25]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[26]  Philip Heidelberger,et al.  Fast simulation of rare events in queueing and reliability models , 1993, TOMC.

[27]  Jason H. Goodfriend,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1995 .

[28]  David Lindley,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 2010 .

[29]  Vivek S. Borkar,et al.  Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation , 2006, Oper. Res..

[30]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[31]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[32]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[33]  Sujin Kim,et al.  Non-linear control variates for regenerative steady-state simulation , 2007, 2007 Winter Simulation Conference.

[34]  L. de Haan,et al.  Estimating the probability of a rare event , 1999 .

[35]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[36]  T. E. Booth,et al.  Exponential convergence for Monte Carlo particle transport , 1985 .

[37]  Gerardo Rubino,et al.  Estimating the probability of a rare event over a finite time horizon , 2007, 2007 Winter Simulation Conference.

[38]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[39]  Peter W. Glynn,et al.  A Markov chain perspective on adaptive Monte Carlo algorithms , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[40]  Pierre L'Ecuyer,et al.  EFFECTIVE APPROXIMATION OF ZERO-VARIANCE SIMULATION IN A RELIABILITY SETTING , 2007 .

[41]  Stephen G. Strickland,et al.  Importance sampling for Markov chains: computing variance and determining optimal measures , 1996, Winter Simulation Conference.

[42]  Perwez Shahabuddin,et al.  Importance sampling for the simulation of highly reliable Markovian systems , 1994 .

[43]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[44]  B. Simon,et al.  Adaptive simulation using perfect control variates , 2004, Journal of Applied Probability.

[45]  Peter W. Glynn,et al.  Asymptotic robustness of estimators in rare-event simulation , 2007, TOMC.