Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks

In this paper, a simple transformation of coordinates is proposed that facilitates the efficient simulation of the non-isothermal lithium-ion pseudo 2-D battery model. The transformed model is then conveniently discretized using orthogonal collocation with the collocation points in the spatial direction. The resulting system of differential algebraic equations (DAEs) is solved using efficient adaptive solvers in time. A series of mathematical operations are performed to reformulate the model to enhance computational efficiency and programming convenience while maintaining accuracy even when non-linear or temperature dependent parameters are used. The transformed coordinate allows for efficient simulation and extension from cell sandwich to stack models. Furthermore, the transformation and reformulation techniques are used to simulate operation of an 8-cell battery stack subject to varying heat transfer coefficients as well as specified temperature boundary conditions.

[1]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[2]  B. Finlayson,et al.  Orthogonal collocation on finite elements , 1975 .

[3]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[4]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[5]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[6]  S. Whitaker,et al.  The spatial averaging theorem revisited , 1985 .

[7]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[8]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[9]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[10]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[11]  M. Doyle,et al.  Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .

[12]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[13]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[14]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[15]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[16]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[17]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[18]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[19]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[20]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[21]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[22]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[23]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[24]  Shung-Ik Lee,et al.  Modeling on lithium insertion of porous carbon electrodes , 2002 .

[25]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[26]  Hsueh-Chia Chang,et al.  Hyperbolic Homogenized Models for Thermal and Solutal Dispersion , 2003, SIAM J. Appl. Math..

[27]  V. Balakotaiah,et al.  Averaging theory and low-dimensional models for chemical reactors and reacting flows , 2003 .

[28]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[29]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[30]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[31]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[32]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[33]  V. Subramanian,et al.  Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .

[34]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[35]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[36]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[37]  Chaoyang Wang,et al.  Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles , 2006 .

[38]  J. Newman,et al.  A mathematical model of stress generation and fracture in lithium manganese oxide , 2006 .

[39]  Shengyi Liu An analytical solution to Li/Li+ insertion into a porous electrode , 2006 .

[40]  Ralph E. White,et al.  Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model , 2007 .

[41]  R. Braatz,et al.  Monte Carlo Simulation of Kinetically Limited Electrodeposition on a Surface with Metal Seed Clusters , 2007 .

[42]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[43]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[44]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[45]  Ralph E. White,et al.  Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations , 2009 .

[46]  Anton Van der Ven,et al.  Phase stability and nondilute Li diffusion in spinel Li 1 + x Ti 2 O 4 , 2010 .

[47]  V. Subramanian,et al.  Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models , 2009, ECS Transactions.

[48]  R. Braatz,et al.  Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode , 2010 .

[49]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[50]  R. Braatz,et al.  Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation , 2011 .

[51]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[52]  Sunwoo Lee,et al.  Integration of Carbon Nanotube Interconnects for Full Compatibility with Semiconductor Technologies , 2011 .