Nontrivial thermoelectric behavior in cubic SnSe driven by spin-orbit coupling

[1]  G. J. Snyder,et al.  High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe2. , 2017, Angewandte Chemie.

[2]  Jun Jiang,et al.  Improving Thermoelectric Performance of α‐MgAgSb by Theoretical Band Engineering Design , 2017 .

[3]  Jun Jiang,et al.  Optimizing the thermoelectric performance of In–Cd codoped SnTe by introducing Sn vacancies , 2017 .

[4]  Jun Jiang,et al.  Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe , 2017 .

[5]  B. Iversen,et al.  High-Temperature Crystal Structure and Chemical Bonding in Thermoelectric Germanium Selenide (GeSe). , 2017, Chemistry.

[6]  Jun Jiang,et al.  Manipulating Band Convergence and Resonant State in Thermoelectric Material SnTe by Mn–In Codoping , 2017 .

[7]  B. Ge,et al.  Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects , 2017, Advanced materials.

[8]  Jun Jiang,et al.  Enhanced thermoelectric performance in n-type polycrystalline SnSe by PbBr2 doping , 2017 .

[9]  D. Ory,et al.  Fatty acid synthesis configures the plasma membrane for inflammation in diabetes , 2016, Nature.

[10]  Kamal K. Kar,et al.  Recent advances in thermoelectric materials , 2016 .

[11]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[12]  M. Kanatzidis,et al.  Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe , 2016 .

[13]  T. Kamiya,et al.  Nonequilibrium Rock-Salt-Type Pb-Doped SnSe with High Carrier Mobilities ≈ 300 cm2/(Vs) , 2016 .

[14]  Jun Jiang,et al.  Optimization of thermoelectric properties in n-type SnSe doped with BiCl3 , 2016 .

[15]  Jun Jiang,et al.  Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation , 2016 .

[16]  Z. Ren,et al.  Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe , 2016 .

[17]  Jingfeng Li,et al.  Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals. , 2015, Physical chemistry chemical physics : PCCP.

[18]  Yue Chen,et al.  Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe , 2015 .

[19]  Jiaqiang Xu,et al.  Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method , 2015 .

[20]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015, Journal of the American Chemical Society.

[21]  Gang Chen,et al.  Studies on Thermoelectric Properties of n‐type Polycrystalline SnSe1‐xSx by Iodine Doping , 2015 .

[22]  Xingxing Jiang,et al.  Thermoelectric performance of SnS and SnS–SnSe solid solution , 2015 .

[23]  G. J. Snyder,et al.  Thermoelectric properties of p-type polycrystalline SnSe doped with Ag , 2014 .

[24]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[25]  Wen-Tai Lin,et al.  Phase formation, morphology evolution and tunable bandgap of Sn1−xSbxSe nanocrystals , 2014 .

[26]  Heng Wang,et al.  Tuning bands of PbSe for better thermoelectric efficiency , 2014 .

[27]  D. Negi,et al.  High thermoelectric performance in tellurium free p-type AgSbSe2 , 2013 .

[28]  G. J. Snyder,et al.  Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency , 2012 .

[29]  Mikhail Zhernenkov,et al.  Pressure tuning of the spin-orbit coupled ground state in Sr2IrO4. , 2012, Physical review letters.

[30]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[31]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[32]  J. Toboła,et al.  Influence of Doping on Structural and Thermoelectric Properties of AgSbSe2 , 2010 .

[33]  J. L. Smith,et al.  Band structure of SnTe studied by photoemission spectroscopy. , 2010, Physical review letters.

[34]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[35]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[36]  Jaejun Yu,et al.  Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. , 2008, Physical review letters.

[37]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[38]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[39]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  Zhang,et al.  Non-Fermi-liquid theory of a compactified Anderson single-impurity model. , 1996, Physical review. B, Condensed matter.

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  M. Schlüter,et al.  Pressure and temperature dependence of electronic energy levels in PbSe and PbTe , 1975 .

[46]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[47]  K. Chopra,et al.  POLYMORPHISM IN SOME IV‐VI COMPOUNDS INDUCED BY HIGH PRESSURE AND THIN‐FILM EPITAXIAL GROWTH , 1967 .