Mechanisms of signalling and biased agonism in G protein-coupled receptors

[1]  A. Kruse,et al.  Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling , 2018, Proceedings of the National Academy of Sciences.

[2]  Pierangelo Geppetti,et al.  Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief , 2017, Science Translational Medicine.

[3]  Ron O. Dror,et al.  Structural basis for nucleotide exchange in heterotrimeric G proteins , 2015, Science.

[4]  J. Violin,et al.  TRV120027, a Novel &bgr;-Arrestin Biased Ligand at the Angiotensin II Type I Receptor, Unloads the Heart and Maintains Renal Function When Added to Furosemide in Experimental Heart Failure , 2012, Circulation. Heart failure.

[5]  L. Miller,et al.  Cholecystokinin responsiveness varies across the population dependent on metabolic phenotype. , 2017, The American journal of clinical nutrition.

[6]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[7]  Hualiang Jiang,et al.  Structure of the glucagon receptor in complex with a glucagon analogue , 2018, Nature.

[8]  Kyle V. Butler,et al.  Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs , 2017, Nature chemical biology.

[9]  Pierangelo Geppetti,et al.  Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission , 2017, Proceedings of the National Academy of Sciences.

[10]  R. Sommese,et al.  Priming GPCR signaling through the synergistic effect of two G proteins , 2017, Proceedings of the National Academy of Sciences.

[11]  R. Sunahara,et al.  ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells , 2017, Scientific Reports.

[12]  Hugo Gutiérrez-de-Terán,et al.  Sodium Ion Binding Pocket Mutations and Adenosine A2A Receptor Function , 2015, Molecular Pharmacology.

[13]  Arthur Christopoulos,et al.  Quantification of Ligand Bias for Clinically Relevant β2-Adrenergic Receptor Ligands: Implications for Drug Taxonomy , 2014, Molecular Pharmacology.

[14]  Thomas O'Hara,et al.  Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. , 2014, Journal of molecular and cellular cardiology.

[15]  A. Varela-Echavarría,et al.  Newly synthesized cAMP is integrated at a membrane protein complex signalosome to ensure receptor response specificity , 2017, The FEBS journal.

[16]  T. S. Kobilka,et al.  Cryo-EM structure of the activated GLP-1 receptor in complex with G protein , 2017, Nature.

[17]  H. Dohlman,et al.  Amino acid metabolites that regulate G protein signaling during osmotic stress , 2017, PLoS genetics.

[18]  Henrik G. Dohlman,et al.  Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation , 2015, Proceedings of the National Academy of Sciences.

[19]  Y. Peterson,et al.  The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling , 2017, Pharmacological Reviews.

[20]  G. Dorn,et al.  β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure , 2003, Nature Medicine.

[21]  P. Sexton,et al.  Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery , 2012, Proceedings of the National Academy of Sciences.

[22]  T. Whitford,et al.  White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids , 2016, BMC Psychiatry.

[23]  H. Riezman,et al.  Understanding the diversity of membrane lipid composition , 2018, Nature Reviews Molecular Cell Biology.

[24]  U. Zabel,et al.  Fluorescence Resonance Energy Transfer Analysis of α2a-Adrenergic Receptor Activation Reveals Distinct Agonist-Specific Conformational Changes , 2009, Molecular Pharmacology.

[25]  Meritxell Canals,et al.  Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling , 2016, Science Signaling.

[26]  J. Benovic,et al.  G protein-coupled receptor kinases: Past, present and future. , 2018, Cellular signalling.

[27]  T. Huber,et al.  GPCRs globally coevolved with receptor activity-modifying proteins, RAMPs , 2017, Proceedings of the National Academy of Sciences.

[28]  R. Stevens,et al.  How Ligands Illuminate GPCR Molecular Pharmacology , 2017, Cell.

[29]  K. Gregory,et al.  Molecular insights into allosteric modulation of Class C G protein-coupled receptors. , 2017, Pharmacological research.

[30]  H. Xu,et al.  Assembly and architecture of the Wnt/β‐catenin signalosome at the membrane , 2017, British journal of pharmacology.

[31]  Oxana V. Baranova,et al.  Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release , 2017, Proceedings of the National Academy of Sciences.

[32]  A. J. Venkatakrishnan,et al.  Universal allosteric mechanism for Gα activation by GPCRs , 2015, Nature.

[33]  S. Ferguson,et al.  PDZ Protein Regulation of G Protein–Coupled Receptor Trafficking and Signaling Pathways , 2015, Molecular Pharmacology.

[34]  P. Sexton,et al.  Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. , 2017, Chemical reviews.

[35]  L. Lazzeroni,et al.  A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. P. Andrews,et al.  Extra-helical binding site of a glucagon receptor antagonist , 2016, Nature.

[37]  L. Vaca,et al.  Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu , 2012, Journal of Cell Science.

[38]  Naomi R. Latorraca,et al.  GPCR Dynamics: Structures in Motion. , 2017, Chemical reviews.

[39]  P Ghanouni,et al.  The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation. , 2000, The Journal of biological chemistry.

[40]  R. Stevens,et al.  Extending the Structural View of Class B GPCRs. , 2017, Trends in biochemical sciences.

[41]  M. Lohse,et al.  A Fluorescence Resonance Energy Transfer-based M2 Muscarinic Receptor Sensor Reveals Rapid Kinetics of Allosteric Modulation* , 2010, Journal of Biological Chemistry.

[42]  R. Thakker,et al.  Calcimimetic and calcilytic therapies for inherited disorders of the calcium‐sensing receptor signalling pathway , 2018, British journal of pharmacology.

[43]  Hong-da Liu,et al.  Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR , 2015, Nature Communications.

[44]  Chris de Graaf,et al.  Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators , 2017, Nature.

[45]  Ryan T. Strachan,et al.  Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin , 2011, Science Signaling.

[46]  M. von Zastrow,et al.  Functional selectivity of GPCR-directed drug action through location bias , 2017, Nature chemical biology.

[47]  P. A. Friedman,et al.  Oxidation inhibits PTH receptor signaling and trafficking. , 2017, Biochemical and biophysical research communications.

[48]  Henry Lin,et al.  Structure-based discovery of opioid analgesics with reduced side effects , 2016, Nature.

[49]  Arthur Christopoulos,et al.  THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein‐coupled receptors , 2017, British journal of pharmacology.

[50]  P. Sexton,et al.  Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. , 2016, Biochemical pharmacology.

[51]  Natasa Przulj,et al.  Systematic protein–protein interaction mapping for clinically relevant human GPCRs , 2017 .

[52]  S. Rasmussen,et al.  Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor , 2012, Proceedings of the National Academy of Sciences.

[53]  A. Tobin,et al.  The use of chemogenetic approaches to study the physiological roles of muscarinic acetylcholine receptors in the central nervous system , 2017, Neuropharmacology.

[54]  P. Conn,et al.  Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders , 2017, Neuron.

[55]  Tilman Flock,et al.  Structured and disordered facets of the GPCR fold. , 2014, Current opinion in structural biology.

[56]  U. Gether,et al.  The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway , 2017, The Journal of Biological Chemistry.

[57]  L. Miller,et al.  Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein‐coupled receptor structure and function , 2018, British journal of pharmacology.

[58]  P. Sexton,et al.  Coexpressed Class B G Protein–Coupled Secretin and GLP-1 Receptors Self- and Cross-Associate: Impact on Pancreatic Islets , 2017, Endocrinology.

[59]  David E. Gloriam,et al.  5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology , 2018, Cell.

[60]  Robert G. Parton,et al.  Caveolae as plasma membrane sensors, protectors and organizers , 2013, Nature Reviews Molecular Cell Biology.

[61]  C. Bellanné-Chantelot,et al.  Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization , 2017, The Journal of experimental medicine.

[62]  B. Kobilka,et al.  Structure and dynamics of GPCR signaling complexes , 2018, Nature Structural & Molecular Biology.

[63]  M. von Zastrow,et al.  Spatial encoding of cyclic AMP signalling specificity by GPCR endocytosis , 2014, Nature chemical biology.

[64]  Jonathan A. Javitch,et al.  Single-molecule analysis of ligand efficacy in β2AR-G protein activation , 2017, Nature.

[65]  Ryan T. Strachan,et al.  GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling , 2016, Cell.

[66]  S. Gygi,et al.  Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling , 2017, Cell.

[67]  L. Devi,et al.  G Protein-Coupled Receptor Heteromers. , 2016, Annual review of pharmacology and toxicology.

[68]  G. Milligan,et al.  Spatial Intensity Distribution Analysis: Studies of G Protein-Coupled Receptor Oligomerisation , 2017, Trends in pharmacological sciences.

[69]  J. Wess,et al.  Lack of beta-arrestin signaling in the absence of active G proteins , 2018, Nature Communications.

[70]  Paul A. Insel,et al.  G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? , 2018, Molecular Pharmacology.

[71]  S. Nattel,et al.  Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors. , 2013, Journal of molecular and cellular cardiology.

[72]  P. Sexton,et al.  Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy , 2018, Biochemical pharmacology.

[73]  S. Rasmussen,et al.  Allosteric coupling from G protein to the agonist binding pocket in GPCRs , 2016, Nature.

[74]  Vadim Cherezov,et al.  Allosteric sodium in class A GPCR signaling. , 2014, Trends in biochemical sciences.

[75]  J. Lamerdin,et al.  Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis , 2017, Proceedings of the National Academy of Sciences.

[76]  P. Sexton,et al.  Characterization of signal bias at the GLP‐1 receptor induced by backbone modification of GLP‐1 , 2017, Biochemical pharmacology.

[77]  Naomi R. Latorraca,et al.  Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors , 2017, Cell.

[78]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[79]  Angela D. Wilkins,et al.  Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity , 2017, Nature Communications.

[80]  A. J. Venkatakrishnan,et al.  Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region , 2016, Nature.

[81]  Arthur Christopoulos,et al.  Phase-plate cryo-EM structure of a class B GPCR-G protein complex , 2017, Nature.

[82]  David E. Gloriam,et al.  Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.

[83]  I. Hötzel,et al.  Molecular basis for negative regulation of the glucagon receptor , 2012, Proceedings of the National Academy of Sciences.

[84]  Shailesh N Mistry,et al.  Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics , 2015, British journal of pharmacology.

[85]  Samuel H. Gellman,et al.  PTH receptor-1 signalling—mechanistic insights and therapeutic prospects , 2015, Nature Reviews Endocrinology.

[86]  A. Pioszak,et al.  Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles. , 2016, Annual review of pharmacology and toxicology.

[87]  Søren L Pedersen,et al.  Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. , 2017, Nature chemical biology.

[88]  W. Baumeister,et al.  Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex , 2018, Nature.

[89]  Guangyu Wu Trafficking of GPCRs , 2015 .

[90]  D. Cooper,et al.  Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex , 2010, The EMBO journal.

[91]  L. Miller,et al.  Beneficial effects of β-sitosterol on type 1 cholecystokinin receptor dysfunction induced by elevated membrane cholesterol. , 2016, Clinical nutrition.

[92]  David E. Gloriam,et al.  Pharmacogenomics of GPCR Drug Targets , 2018, Cell.

[93]  P. Dallaire,et al.  Analyzing biased responses of GPCR ligands. , 2017, Current opinion in pharmacology.

[94]  P. Sexton,et al.  Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy , 2016, Cell.

[95]  J. Vilardaga,et al.  Noncanonical GPCR signaling arising from a PTH receptor–arrestin–Gβγ complex , 2013, Proceedings of the National Academy of Sciences.

[96]  C. Tate,et al.  Agonist-bound structures of G protein-coupled receptors. , 2012, Current opinion in structural biology.

[97]  L. Mosyak,et al.  Structural mechanism of ligand activation in human GABAB receptor , 2013, Nature.

[98]  Terry Kenakin,et al.  Theoretical Aspects of GPCR-Ligand Complex Pharmacology. , 2017, Chemical reviews.

[99]  Chris de Graaf,et al.  Structure of the human glucagon class B G-protein-coupled receptor , 2013, Nature.

[100]  J. Black,et al.  Operational models of pharmacological agonism , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[101]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[102]  Vadim Cherezov,et al.  Diversity and modularity of G protein-coupled receptor structures. , 2012, Trends in pharmacological sciences.

[103]  Yue Lu,et al.  Corrigendum: LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice , 2016, Nature Communications.

[104]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[105]  P. Sexton,et al.  Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor , 2016, Biochemical pharmacology.

[106]  Brinda K Rana,et al.  Pharmacogenetics of the G protein-coupled receptors. , 2014, Methods in molecular biology.

[107]  Boyang Zhang,et al.  Constitutive activities and inverse agonism in dopamine receptors. , 2014, Advances in pharmacology.

[108]  J. Pin,et al.  Class C G protein-coupled receptors: reviving old couples with new partners , 2017, Biophysics reports.

[109]  R. Ghirlando,et al.  Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. , 2012, Journal of molecular biology.

[110]  Jianfeng Liu,et al.  Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. , 2015, Nature chemical biology.

[111]  M. Bruchas,et al.  Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. , 2017, Current opinion in pharmacology.

[112]  Sudarshan Rajagopal,et al.  Biased signalling: from simple switches to allosteric microprocessors , 2018, Nature Reviews Drug Discovery.

[113]  M. Grossmann,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[114]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[115]  J. Vilardaga ENDOSOMAL GENERATION OF cAMP in GPCR SIGNALING , 2014, Nature chemical biology.

[116]  D. Devost,et al.  Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context* , 2017, The Journal of Biological Chemistry.

[117]  I. Shimada,et al.  Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR , 2018, Nature Communications.

[118]  William Stillwell,et al.  Chapter 1 – Introduction to Biological Membranes , 2016 .

[119]  Martin J. Lohse,et al.  β2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation , 2010, Science.

[120]  P. Sexton,et al.  Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice , 2017, Nature Communications.

[121]  L. Mosyak,et al.  Structural mechanism of ligand activation in human calcium-sensing receptor , 2016, eLife.

[122]  M. Madan Babu,et al.  Selectivity determinants of GPCR–G-protein binding , 2017, Nature.

[123]  Guodong Liu,et al.  A G Protein-Biased Ligand at the μ-Opioid Receptor Is Potently Analgesic with Reduced Gastrointestinal and Respiratory Dysfunction Compared with Morphine , 2013, The Journal of Pharmacology and Experimental Therapeutics.

[124]  H. Petty An Introduction to Biological Membranes , 1993 .

[125]  Y. Korchev,et al.  Plasticity of Surface Structures and &bgr;2-Adrenergic Receptor Localization in Failing Ventricular Cardiomyocytes During Recovery From Heart Failure , 2012, Circulation. Heart failure.

[126]  L. Lazzeroni,et al.  A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure , 2006 .

[127]  D. Srinivasan,et al.  Melanocortin Receptor Accessory Proteins (MRAPs): Functions in the melanocortin system and beyond. , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[128]  M. Lark,et al.  TRV120027, a Novel Beta-Arrestin Biased Ligand at the Angiotensin II Type I Receptor, Unloads the Heart and Maintains Renal Function When Added to Furosemide in Experimental Heart Failure , 2011 .

[129]  H. Moore,et al.  Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors , 2017, Nature Communications.

[130]  P. Dijkman,et al.  Lipid modulation of early G protein-coupled receptor signalling events. , 2015, Biochimica et biophysica acta.

[131]  M. von Zastrow,et al.  Effects of endocytosis on receptor-mediated signaling. , 2015, Current Opinion in Cell Biology.

[132]  M. Nooh,et al.  Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks. , 2017, Cellular signalling.

[133]  C. Pantelis,et al.  Convergent evidence for mGluR5 in synaptic and neuroinflammatory pathways implicated in ASD , 2015, Neuroscience & Biobehavioral Reviews.

[134]  Ali Jazayeri,et al.  Structure of class B GPCR corticotropin-releasing factor receptor 1 , 2013, Nature.

[135]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[136]  K. Cooney,et al.  Lipid stress inhibits endocytosis of melanocortin-4 receptor from modified clathrin-enriched sites and impairs receptor desensitization , 2017, The Journal of Biological Chemistry.

[137]  Melanie G. Lee,et al.  RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor , 1998, Nature.

[138]  M. von Zastrow,et al.  Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity , 2017, Nature Genetics.

[139]  L. Hunyady,et al.  Heterologous phosphorylation–induced formation of a stability lock permits regulation of inactive receptors by β-arrestins , 2017, The Journal of Biological Chemistry.

[140]  J. Benovic,et al.  Site-specific Phosphorylation of CXCR4 Is Dynamically Regulated by Multiple Kinases and Results in Differential Modulation of CXCR4 Signaling* , 2010, The Journal of Biological Chemistry.

[141]  J. Hell Faculty Opinions recommendation of Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. , 2010 .

[142]  P. Sexton,et al.  The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. , 2012, Annual review of pharmacology and toxicology.

[143]  R. Lefkowitz,et al.  Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[144]  G. Stark,et al.  Hypoxia sensing through β-adrenergic receptors. , 2016, JCI insight.

[145]  Robert J. Lefkowitz,et al.  Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands , 2009, Proceedings of the National Academy of Sciences.

[146]  Sara R. Jones,et al.  Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria , 2016, Science Signaling.

[147]  Guangyu Wu,et al.  Role of Rab GTPases in the export trafficking of G protein-coupled receptors , 2018, Small GTPases.

[148]  Arthur Christopoulos,et al.  Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations , 2013, Proceedings of the National Academy of Sciences.

[149]  Philippe P Roux,et al.  A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling , 2017, Nature Communications.

[150]  S. Nuber,et al.  β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle , 2016, Nature.

[151]  I. Hötzel,et al.  Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor* , 2013, The Journal of Biological Chemistry.

[152]  S. Stamm,et al.  The activity of the serotonin receptor 2C is regulated by alternative splicing , 2017, Human Genetics.

[153]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[154]  A. Frangaj,et al.  Structural biology of GABAB receptor , 2017, Neuropharmacology.

[155]  S. Charlton,et al.  Biased Agonism in Drug Discovery—Is It Too Soon to Choose a Path? , 2018, Molecular Pharmacology.

[156]  B. Roth,et al.  New Technologies for Elucidating Opioid Receptor Function. , 2016, Trends in pharmacological sciences.

[157]  B. Roth DREADDs for Neuroscientists , 2016, Neuron.

[158]  B. Farran An update on the physiological and therapeutic relevance of GPCR oligomers , 2017, Pharmacological research.

[159]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[160]  L. Brown,et al.  Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. , 2017, Biochimica et biophysica acta. Proteins and proteomics.

[161]  Arthur Christopoulos,et al.  Structural insights into G-protein-coupled receptor allostery , 2018, Nature.

[162]  D. E. Nichols,et al.  Crystal Structure of an LSD-Bound Human Serotonin Receptor , 2017, Cell.

[163]  M. von Zastrow,et al.  G Protein-coupled Receptor (GPCR) Signaling via Heterotrimeric G Proteins from Endosomes* , 2015, The Journal of Biological Chemistry.

[164]  P. Sexton,et al.  The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism , 2016, Cell.

[165]  William Stillwell,et al.  An Introduction to Biological Membranes : Composition, Structure and Function Ed. 2 , 2016 .

[166]  M. Halls,et al.  Compartmentalization of GPCR signalling controls unique cellular responses. , 2016, Biochemical Society Transactions.

[167]  V. Mutel,et al.  Lateral Allosterism in the Glucagon Receptor Family: Glucagon-Like Peptide 1 Induces G-Protein-Coupled Receptor Heteromer Formation , 2012, Molecular Pharmacology.

[168]  B. Kobilka,et al.  Allosteric regulation of G protein-coupled receptor activity by phospholipids. , 2016, Nature chemical biology.

[169]  P. Sexton,et al.  A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures , 2016, Molecular Pharmacology.

[170]  N. Davis-Poynter,et al.  Virus-encoded 7 transmembrane receptors. , 2015, Progress in molecular biology and translational science.

[171]  Mohit Kumar,et al.  Novel Structural Insights into GPCR-β-Arrestin Interaction and Signaling. , 2017, Trends in cell biology.

[172]  M. Caron,et al.  Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[173]  Ryan T. Strachan,et al.  Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor , 2018, Cell.

[174]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[175]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[176]  F. Cattaruzza,et al.  Endothelin-converting Enzyme 1 and β-Arrestins Exert Spatiotemporal Control of Substance P-induced Inflammatory Signals* , 2014, The Journal of Biological Chemistry.

[177]  Shahriar M. Khan,et al.  Gβγ subunits-Different spaces, different faces. , 2016, Pharmacological research.

[178]  Arthur Christopoulos,et al.  The role of kinetic context in apparent biased agonism at GPCRs , 2016, Nature Communications.

[179]  J. Violin,et al.  Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model. , 2015, Cardiovascular research.

[180]  J. Lanciego,et al.  Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization , 2016, Front. Pharmacol..

[181]  Arthur Christopoulos,et al.  A kinetic view of GPCR allostery and biased agonism. , 2017, Nature chemical biology.

[182]  L. Pardo,et al.  Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase , 2018, Nature Communications.

[183]  J. Taboas,et al.  β2‐adrenergic receptor control of endosomal PTH receptor signaling via Gβγ , 2017, Nature chemical biology.

[184]  O. Lichtarge,et al.  Type 2 diabetes–associated variants of the MT2 melatonin receptor affect distinct modes of signaling , 2018, Science Signaling.

[185]  A. Tobin,et al.  Differential G-protein-coupled Receptor Phosphorylation Provides Evidence for a Signaling Bar Code* , 2010, The Journal of Biological Chemistry.

[186]  Hualiang Jiang,et al.  Structure of the full-length glucagon class B G protein-coupled receptor , 2017, Nature.

[187]  Ali Jazayeri,et al.  Crystal structure of the GLP-1 receptor bound to a peptide agonist , 2017, Nature.

[188]  A. J. Venkatakrishnan,et al.  Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor , 2014, Science.

[189]  J. Changeux,et al.  International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands , 2014, Pharmacological Reviews.

[190]  L. Bohn,et al.  Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics , 2017, Cell.

[191]  Jiening Xiao,et al.  Intracellular Angiotensin‐II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion , 2017, Journal of the American Heart Association.