Support vector machine multiuser receiver for DS-CDMA signals in multipath channels

The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.

[1]  Sheng Chen Nonlinear time series modelling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning , 1995 .

[2]  Sheng Chen,et al.  A clustering technique for digital communications channel equalization using radial basis function networks , 1993, IEEE Trans. Neural Networks.

[3]  F. Albu,et al.  The application of support vector machines with Gaussian kernels for overcoming co-channel interference , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[4]  H. Vincent Poor,et al.  Probability of error in MMSE multiuser detection , 1997, IEEE Trans. Inf. Theory.

[5]  Dimitris A. Pados,et al.  On adaptive minimum probability of error linear filter receivers for DS-CDMA channels , 1999, IEEE Trans. Commun..

[6]  Bernard Mulgrew Nonlinear signal processing for adaptive equalisation and multi-user detection , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[7]  Aníbal R. Figueiras-Vidal,et al.  Sample selection via clustering to construct support vector-like classifiers , 1999, IEEE Trans. Neural Networks.

[8]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[9]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[10]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[11]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[12]  John R. Barry,et al.  Approximate minimum bit-error rate multiuser detection , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[13]  R. Tanner,et al.  Volterra Based Receivers for Ds-Cdma , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[14]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[15]  Behnaam Aazhang,et al.  Gradient estimation for sensitivity analysis and adaptive multiuser interference rejection in code-division multiple-access systems , 1997, IEEE Trans. Commun..

[16]  Urbashi Mitra,et al.  Neural network techniques for adaptive multiuser demodulation , 1994, IEEE J. Sel. Areas Commun..

[17]  Sheng Chen,et al.  Bayesian decision feedback equaliser for overcoming co-channel interference , 1996 .

[18]  S. Sathiya Keerthi,et al.  A fast iterative nearest point algorithm for support vector machine classifier design , 2000, IEEE Trans. Neural Networks Learn. Syst..

[19]  Craig K. Rushforth,et al.  A Family of Suboptimum Detectors for Coherent Multiuser Communications , 1990, IEEE J. Sel. Areas Commun..

[20]  B. Vucetic,et al.  Adaptive detection for DS-CDMA , 1998, Proc. IEEE.

[21]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[22]  James A. Bucklew,et al.  Support vector machine techniques for nonlinear equalization , 2000, IEEE Trans. Signal Process..

[23]  Andreas Antoniou,et al.  Constrained minimum-BER multiuser detection , 2000, IEEE Trans. Signal Process..

[24]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..

[25]  Lajos Hanzo,et al.  Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels , 2001, IEEE Trans. Signal Process..

[26]  Chris J. Harris,et al.  Decision feedback equaliser design using support vector machines , 2000 .

[27]  Ramjee Prasad,et al.  CDMA for wireless personal communications , 1996 .

[28]  Bernd-Peter Paris,et al.  Neural networks for multiuser detection in code-division multiple-access communications , 1992, IEEE Trans. Commun..

[29]  V. Vapnik The Support Vector Method of Function Estimation , 1998 .

[30]  Scott L. Miller An adaptive direct-sequence code-division multiple-access receiver for multiuser interference rejection , 1995, IEEE Trans. Commun..

[31]  Fernando Pérez-Cruz,et al.  SVC-based equalizer for burst TDMA transmissions , 2001, Signal Process..

[32]  S. Moshavi,et al.  Multi-user detection for DS-CDMA communications , 1996, IEEE Commun. Mag..

[33]  Carlo H. Séquin,et al.  Optimal adaptive k-means algorithm with dynamic adjustment of learning rate , 1995, IEEE Trans. Neural Networks.

[34]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[35]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[36]  D.G.M. Cruickshank Radial basis function receivers for DS-CDMA , 1996 .