Tissue hypoxia, inflammation, and loss of glomerular filtration rate in human atherosclerotic renovascular disease.

[1]  L. Lerman,et al.  Ccl2 deficiency protects against chronic renal injury in murine renovascular hypertension , 2018, Scientific Reports.

[2]  P. Prasad Update on renal blood oxygenation level-dependent MRI to assess intrarenal oxygenation in chronic kidney disease. , 2018, Kidney international.

[3]  M. Stuber,et al.  Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. , 2018, Kidney international.

[4]  S. Textor,et al.  Current Concepts in the Treatment of Renovascular Hypertension. , 2018, American journal of hypertension.

[5]  Yuancheng Wang,et al.  Noninvasive Identification of Renal Hypoxia in Experimental Myocardial Infarctions of Different Sizes by Using BOLD MR Imaging in a Mouse Model. , 2018, Radiology.

[6]  C. McCollough,et al.  Intrarenal fat deposition does not interfere with the measurement of single-kidney perfusion in obese swine using multi-detector computed tomography. , 2018, Journal of cardiovascular computed tomography.

[7]  A. Dietz,et al.  Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. , 2017, Journal of the American Society of Nephrology : JASN.

[8]  Tetsuhiro Tanaka,et al.  Renal Hypoxia in CKD; Pathophysiology and Detecting Methods , 2017, Front. Physiol..

[9]  M. Burnier,et al.  Blood Oxygenation Level-Dependent MRI to Assess Renal Oxygenation in Renal Diseases: Progresses and Challenges , 2017, Front. Physiol..

[10]  A. Więcek,et al.  C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria , 2016, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[11]  A. Chade,et al.  Role of the Renal Microcirculation in Progression of Chronic Kidney Injury in Obesity , 2016, American Journal of Nephrology.

[12]  L. Lerman,et al.  Changes in inflammatory biomarkers after renal revascularization in atherosclerotic renal artery stenosis. , 2016, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[13]  A. Chade,et al.  Renal Therapeutic Angiogenesis Using a Bioengineered Polymer-Stabilized Vascular Endothelial Growth Factor Construct. , 2016, Journal of the American Society of Nephrology : JASN.

[14]  L. Lerman,et al.  Differences in GFR and Tissue Oxygenation, and Interactions between Stenotic and Contralateral Kidneys in Unilateral Atherosclerotic Renovascular Disease. , 2016, Clinical journal of the American Society of Nephrology : CJASN.

[15]  A. Więcek,et al.  C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. , 2016, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[16]  L. Lerman,et al.  Paradigm Shifts in Atherosclerotic Renovascular Disease: Where Are We Now? , 2015, Journal of the American Society of Nephrology : JASN.

[17]  L. Lerman,et al.  Determination of Single-Kidney Glomerular Filtration Rate in Human Subjects by Using CT. , 2015, Radiology.

[18]  J. Neugarten,et al.  Blood oxygenation level-dependent MRI for assessment of renal oxygenation , 2014, International journal of nephrology and renovascular disease.

[19]  L. Lerman,et al.  Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. , 2014, Cardiovascular research.

[20]  M. Nangaku,et al.  Kidney Hypoxia, Attributable to Increased Oxygen Consumption, Induces Nephropathy Independently of Hyperglycemia and Oxidative Stress , 2013, Hypertension.

[21]  L. Lerman,et al.  Human renovascular disease: estimating fractional tissue hypoxia to analyze blood oxygen level-dependent MR. , 2013, Radiology.

[22]  L. Lerman,et al.  Stent Revascularization Restores Cortical Blood Flow and Reverses Tissue Hypoxia in Atherosclerotic Renal Artery Stenosis but Fails to Reverse Inflammatory Pathways or Glomerular Filtration Rate , 2013, Circulation. Cardiovascular interventions.

[23]  W. Welch,et al.  Renal oxygenation and function of the rat kidney: effects of inspired oxygen and preglomerular oxygen shunting. , 2013, Advances in experimental medicine and biology.

[24]  Tsutomu Inoue,et al.  Is there no future for renal BOLD-MRI? , 2012, Kidney international.

[25]  L. Lerman,et al.  Adipose Tissue‐Derived Mesenchymal Stem Cells Improve Revascularization Outcomes to Restore Renal Function in Swine Atherosclerotic Renal Artery Stenosis , 2012, Stem cells.

[26]  S. Schoenberg,et al.  Renal BOLD-MRI does not reflect renal function in chronic kidney disease. , 2012, Kidney international.

[27]  L. Lerman,et al.  Blood Oxygen Level–Dependent Magnetic Resonance Imaging Identifies Cortical Hypoxia in Severe Renovascular Disease , 2011, Hypertension.

[28]  G. Eppel,et al.  Stability of tissue PO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption , 2011, Clinical and experimental pharmacology & physiology.

[29]  D. Buckley,et al.  Effects of renal volume and single-kidney glomerular filtration rate on renal functional outcome in atherosclerotic renal artery stenosis. , 2010, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[30]  L. Lerman,et al.  Preserved Oxygenation Despite Reduced Blood Flow in Poststenotic Kidneys in Human Atherosclerotic Renal Artery Stenosis , 2010, Hypertension.

[31]  C. Baigent,et al.  Revascularization versus medical therapy for renal-artery stenosis. , 2009, The New England journal of medicine.

[32]  L. Lerman,et al.  Angiogenesis in the kidney: a new therapeutic target? , 2009, Current opinion in nephrology and hypertension.

[33]  R. Lavi,et al.  Endothelial Progenitor Cells Restore Renal Function in Chronic Experimental Renovascular Disease , 2009, Circulation.

[34]  L. Lerman,et al.  Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[35]  David W. Smith,et al.  Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. , 2008, American journal of physiology. Renal physiology.

[36]  S. Riederer,et al.  The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. , 2008, Journal of the American Society of Nephrology : JASN.

[37]  F. Korosec,et al.  Detection of acute renal ischemia in swine using blood oxygen level‐dependent magnetic resonance imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[38]  L. Fine,et al.  Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. , 2000, Kidney international. Supplement.

[39]  T. Larson,et al.  GFR determined by nonradiolabeled iothalamate using capillary electrophoresis. , 1997, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[40]  F. Epstein Oxygen and renal metabolism. , 1997, Kidney international.

[41]  D W Lübbers,et al.  Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. , 1997, Kidney international.

[42]  R R Edelman,et al.  Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. , 1996, Circulation.

[43]  E. Keshet,et al.  Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis , 1992, Nature.