Plenary lecture 5: recent developments in the von Mises transformation and its applications in the computational sciences

The past few decades have witnessed a number of advances in the computational von Mises. These include the introduction of a time-dependent form of the coordinates; the introduction of techniques to handle the infinite Jacobian of transformation (which arises when a no-slip boundary condition is used); and the introduction of the multiple von Mises transformation that is suitable for the study of multiphase flow. In this work, we present analysis of the von Mises transformation and its computational complexities, and report on its recent developments.

[1]  R. Barron,et al.  Axisymmetric potential flow calculations. Part 2: Design mode , 1991 .

[2]  R. Chan A discretized solution for the solitary wave , 1974 .

[3]  J. Finnigan,et al.  A streamline coordinate system for distorted two-dimensional shear flows , 1983, Journal of Fluid Mechanics.

[4]  A. Povitsky,et al.  Stream function–potential function coordinates for aeroacoustics and unsteady aerodynamics , 2009 .

[5]  R. Barron,et al.  Applications of von Mises coordinates in porous media flow , 1992 .

[6]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[7]  Marcel Crochet,et al.  Numerical Methods in Non-Newtonian Fluid Mechanics , 1983 .

[8]  M. Martin The flow of a viscous fluid. I , 1971 .

[9]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[10]  R. Barron,et al.  Axisymmetric potential flow calculations. Part 1: Analysis mode , 1990 .

[11]  R. K. Naeem,et al.  Numerical solution of transonic flows on a streamfunction co‐ordinate system , 1989 .

[12]  C. V. VAN DUIJN,et al.  Brine transport in porous media: On the use of Von Mises and similarity transformations , 1997 .

[13]  R. K. Naeem,et al.  Lifting aerofoil calculations using von Mises variables , 1989 .

[14]  R. Barron Computation of incompressible potential flow using von Mises coordinates , 1989 .

[15]  M. H. Hamdan MULTIPHASE FLUID FLOW IN CURVED DOMAINS B353 . Part I . THEORETICAL ASPECTS , 1992 .

[16]  M. H. Hamdan,et al.  Computational complexities and streamfunction coordinates , 2005, Appl. Math. Comput..

[17]  M. Greywall,et al.  Computation of three-dimensional flows using two stream functions , 1991 .

[18]  T. Benjamin The solitary wave on a stream with an arbitrary distribution of vorticity , 1962, Journal of Fluid Mechanics.