Photo-induced refractive index change in hydrogenated amorphous silicon oxynitride
暂无分享,去创建一个
Makoto Fujimaki | Yoshimichi Ohki | Takashi Noma | Y. Ohki | M. Fujimaki | T. Noma | H. Kato | Hiromitsu Kato
[1] E. Voges,et al. Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems , 1997, IEEE Photonics Technology Letters.
[2] K. Seol,et al. Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass , 1999 .
[3] P. Lambeck,et al. Silicon oxynitride planar waveguiding structures for application in optical communication , 1998 .
[4] E. Voges,et al. Refractive index profiles of ion-implanted fused silica , 1980 .
[5] Norberto Chiodini,et al. Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber preforms , 2001 .
[6] Bertrand Poumellec,et al. The UV-induced refractive index grating in Ge: preforms: additional CW experiments and the macroscopic origin of the change in index , 1996 .
[7] L. Skuja. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide , 1998 .
[8] A. M. Jorgensen,et al. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems. , 2001, Optics letters.
[9] K. Golant,et al. Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex , 1998 .
[10] O. Leistiko,et al. Plasma‐Enhanced Chemical Vapor Deposited Silicon Oxynitride Films for Optical Waveguide Bridges for Use in Mechanical Sensors , 1997 .
[11] G. Przyrembel,et al. Small-size silicon-oxynitride AWG demultiplexer operating around 725 nm , 2000, IEEE Photonics Technology Letters.
[12] A. L. Tomashuk,et al. Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD , 1995 .
[13] A. Smakula. Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide , 1930 .
[14] Robert Mertens,et al. Influence of hydrogen on losses in silicon oxynitride planar optical waveguides , 2000 .
[15] W Gleine,et al. Low-pressure chemical vapor deposition silicon-oxynitride films for integrated optics. , 1992, Applied optics.
[16] W. Kulisch,et al. Plasma-enhanced chemical vapour deposition of silicon dioxide using tetraethoxysilane as silicon source , 1989 .
[17] Makoto Fujimaki,et al. Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO 2 optical-fiber gratings , 1998 .
[18] C. Pai,et al. Downstream microwave plasma‐enhanced chemical vapor deposition of oxide using tetraethoxysilane , 1990 .
[19] K. Worhoff,et al. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics , 1999 .
[20] T. A. Dellin,et al. Volume, index‐of‐refraction, and stress changes in electron‐irradiated vitreous silica , 1977 .
[21] C.G.H. Roeloffzen,et al. Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology , 2000, IEEE Photonics Technology Letters.
[22] Graeme Maxwell,et al. Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide , 1995 .
[23] D C Johnson,et al. Refractive-index changes in fused silica produced by heavy-ion implantation followed by photobleaching. , 1992, Optics letters.
[24] G. W. Arnold. Ion implantation in silicate glasses , 1994 .
[25] C. Pai,et al. Ion and chemical radical effects on the step coverage of plasma enhanced chemical vapor deposition tetraethylorthosilicate films , 1990 .
[26] Makoto Fujimaki,et al. Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings , 2000 .
[27] David J. Moss,et al. Mechanisms of photosensitivity in germanosilica films , 1997 .
[28] Y. Ohki,et al. Paramagnetic centres induced in Ge-doped glass with UV irradiation , 1999 .