Prediction of Polymer Glass Transition Temperatures Using a General Quantitative Structure-Property Relationship Treatment

A novel approach to the prediction of the physical properties of polymers is presented. A QSPR study, involving the use of a newly developed statistical package, CODESSA, is described for the Tg of a set of 22 low molecular weight polymers which gave a four-parameter equation with R2 = 0.928. The physical significance of the descriptors selected is discussed.

[1]  Brian W. Clare Frontier orbital energies in quantitative structure-activity relationships: A comparison of quantum chemical methods , 1994 .

[2]  M. Randic Characterization of molecular branching , 1975 .

[3]  A. Balaban Highly discriminating distance-based topological index , 1982 .

[4]  R. H. Myers Classical and modern regression with applications , 1986 .

[5]  A. J. Hopfinger,et al.  Molecular modelling of polymers: 5. Inclusion of intermolecular energetics in estimating glass and crystal-melt transition temperatures , 1989 .

[6]  D. V. Krevelen,et al.  Prediction of the glass transition temperature of polymers , 1970 .

[7]  A. Leo,et al.  Substituent constants for correlation analysis. , 1977, Journal of medicinal chemistry.

[8]  Maurice M. Bursey,et al.  Comparison of gas chromatography/high-resolution mass spectrometry and mass spectrometry/mass spectrometry for detection of polychlorinated biphenyls and tetrachlorodibenzofuran , 1983 .

[9]  David T. Stanton,et al.  Computer-assisted prediction of normal boiling points of pyrans and pyrroles , 1992, J. Chem. Inf. Comput. Sci..

[10]  S. P. Gupta,et al.  Quantitative Structure‐Activity Relationship Studies on Anticancer Drugs. , 1995 .

[11]  Ivan V. Stankevich,et al.  Topological Indices in Organic Chemistry , 1988 .

[12]  Desire L. Massart,et al.  Prediction of gas chromatographic retention indexes with topological, physicochemical, and quantum chemical parameters , 1983 .

[13]  A. T. Dibenedetto,et al.  Correlation of glass transition temperature and molecular weight: A model based on the principle of corresponding states , 1989 .

[14]  K Tuppurainen,et al.  About the mutagenicity of chlorine-substituted furanones and halopropenals. A QSAR study using molecular orbital indices. , 1991, Mutation research.

[15]  Brian T. Luke,et al.  Evolutionary Programming Applied to the Development of Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships , 1994, J. Chem. Inf. Comput. Sci..

[16]  Patricia L. Smith Chemometrics: Applications of Mathematics and Statistics to Laboratory Systems , 1993 .

[17]  Alan R. Katritzky,et al.  Predicting Physical Properties from Molecular Structure , 1994 .

[18]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[19]  Danail Bonchev,et al.  Generalization of the Graph Center Concept, and Derived Topological Centric Indexes , 1980, J. Chem. Inf. Comput. Sci..

[20]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[21]  N. Bodor,et al.  A new method for the estimation of partition coefficient , 1989 .

[22]  Anton J. Hopfinger,et al.  Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships , 1994, J. Chem. Inf. Comput. Sci..

[23]  J. Chien Raman spectra of aqueous solutions of potassium thiocyanate. , 1947, Journal of the American Chemical Society.

[24]  Anton J. Hopfinger,et al.  Molecular modeling of polymers. IV: Estimation of glass transition temperatures , 1988 .

[25]  N. S. Zefirov,et al.  Electronegativity and molecular geometry. I. General principles of the method and analysis of the effect of short-range electrostatic interactions on bond lengths in organic molecules , 1987 .

[26]  A. Leo,et al.  Substituent constants for correlation analysis in chemistry and biology , 1979 .

[27]  Jean-Luc Brédas,et al.  Quantum Chemistry Aided Design of Organic Polymers: An Introduction to the Quantum Chemistry of Polymers and Its Applications , 1991 .

[28]  Fernando Bernardi,et al.  Importance of nonbonded attraction in the stereochemistry of the SN2' reaction , 1975 .

[29]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[30]  Gilles Klopman,et al.  Calculation of partition coefficients by the charge density method , 1981 .

[31]  S. P. Gupta,et al.  QSAR (quantitative structure-activity relationship) studies on local anesthetics , 1991 .

[32]  H M Brown,et al.  Fabrication method to enhance stability of N,N,N',N'-tetracyclohexyl-3-oxapentanediamide calcium microelectrodes. , 1990, Analytical chemistry.

[33]  Jean-Luc Brédas,et al.  Conjugated polymeric materials : opportunities in electronics, optoelectronics and molecular electronics , 1990 .

[34]  S Bhattacharjee,et al.  Chemometrics in Analytical Chemistry , 1994 .

[35]  Alan R. Katritzky,et al.  Prediction of Gas Chromatographic Retention Times and Response Factors Using a General Quantitative Structure-Property Relationship Treatment , 1994 .

[36]  S. Unger Molecular Connectivity in Structure–activity Analysis , 1987 .

[37]  J. Rivail,et al.  Electronic descriptors in quantitative structure—activity relationships , 1987 .

[38]  Peter C. Jurs,et al.  Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships , 1987 .

[39]  Richard G. Brereton,et al.  Chemometrics: Applications of Mathematics and Statistics to Laboratory Systems , 1991 .

[40]  K. Specht,et al.  Automatic Generation of the Chemical Ringcode from a Connectivity Table , 1980, J. Chem. Inf. Comput. Sci..

[41]  P. Jurs,et al.  Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies , 1990 .

[42]  S. P. Gupta Quantitative Structure-Activity Relationship Studies on Local Anesthetics , 1992 .