Soldercubes: a self-soldering self-reconfiguring modular robot system

Soldercubes are a self-reconfiguring modular robot (MR) system whose modules are light weight, low cost, and designed with manufacturability for large batch production in mind. The frequently cited promises of modular robotics—versatility, robustness, and low cost—assume the availability of large numbers of modules. However, modules in most MR prototypes are large, mechanically complex, expensive, and difficult to manufacture. Soldercubes partially overcome this contradiction through optimizing some components for volume manufacturing processes. With the integration of a soldering connector which weighs only 2 g and has no moving parts, Soldercubes are among the cheapest, lightest and smallest among comparable self-reconfiguring MR systems. This paper describes the Soldercube module design in detail, reports on experiments in a lattice configuration, explores non-lattice applications of the system, and discusses the effects of utilising volume manufacturing processes in module production. All Soldercubes design files are released as open source hardware.

[1]  Han Kiliccote,et al.  I(CES)-cubes: a modular self-reconfigurable bipartite robotic system , 1999, Optics East.

[2]  Radhika Nagpal,et al.  Kilobot: A low cost scalable robot system for collective behaviors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[3]  Mark Yim,et al.  Towards robotic self-reassembly after explosion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Pinhas Ben-Tzvi,et al.  Modular and reconfigurable mobile robotics , 2012, Robotics Auton. Syst..

[5]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  Daniela Rus,et al.  Modular Robot Systems , 2010, IEEE Robotics & Automation Magazine.

[7]  F. Guenter,et al.  The DoF-Box project: An educational kit for configurable robots , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[8]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  S Erol Swarm Robotics: From Sources of Inspiration to Domains of Application , 2005 .

[10]  Hod Lipson,et al.  Evolved and Designed Self-Reproducing Modular Robotics , 2007, IEEE Transactions on Robotics.

[11]  Eiichi Yoshida,et al.  Hardware design of modular robotic system , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[12]  Fumiya Iida,et al.  Physical Connection and Disconnection Control Based on Hot Melt Adhesives , 2013, IEEE/ASME Transactions on Mechatronics.

[13]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[14]  Aude Billard,et al.  Roombots: Reconfigurable Robots for Adaptive Furniture , 2010, IEEE Computational Intelligence Magazine.

[15]  Hod Lipson,et al.  Three Dimensional Stochastic Reconfiguration of Modular Robots , 2005, Robotics: Science and Systems.

[16]  Hod Lipson,et al.  Molecubes: An Open-Source Modular Robotics Kit , 2007 .

[17]  W. McCarthy Programmable matter , 2000, Nature.

[18]  Toshio Fukuda,et al.  Dynamically reconfigurable robotic system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[19]  Eiichi Yoshida,et al.  M-TRAN II: metamorphosis from a four-legged walker to a caterpillar , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  Seth Copen Goldstein,et al.  A modular robotic system using magnetic force effectors , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Satoshi Murata,et al.  Distributed Self-Reconfiguration of M-TRAN III Modular Robotic System , 2008, Int. J. Robotics Res..

[22]  Mark Moll,et al.  SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Emulating self-reconfigurable robots - design of the SMORES system , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Mark Yim,et al.  Modular Self-Reconfigurable Robots , 2009, Encyclopedia of Complexity and Systems Science.

[25]  Ying Zhang,et al.  Robotics: modular robots , 2002 .

[26]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[27]  Mark Yim,et al.  Telecubes: mechanical design of a module for self-reconfigurable robotics , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Mark Yim,et al.  Reliable External Actuation for Full Reachability in Robotic Modular Self-reconfiguration , 2010, Int. J. Robotics Res..

[29]  G. Beni,et al.  The concept of cellular robotic system , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[30]  Kasper Stoy,et al.  Self-Reconfigurable Robots: An Introduction , 2010 .

[31]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[32]  Heinz Wörn,et al.  The Collective Self-reconfigurable Modular Organism (CoSMO) , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[33]  L. Penrose,et al.  Self-Reproducing Machines , 1959 .

[34]  Henrik Hautop Lund,et al.  Design of the ATRON lattice-based self-reconfigurable robot , 2006, Auton. Robots.

[35]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[36]  Daniela Rus,et al.  M-blocks: Momentum-driven, magnetic modular robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Henrik Hautop Lund,et al.  Modular ATRON: modules for a self-reconfigurable robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[38]  Peter M. Will,et al.  Autonomous and Self-Sufficient CONRO Modules for Reconfigurable Robots , 2000, DARS.

[39]  Jianwei Zhang,et al.  Development of a low-cost flexible modular robot GZ-I , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[40]  Seth Copen Goldstein,et al.  Programmable Matter , 2005, Computer.

[41]  Rolf Pfeifer,et al.  Peltier-based freeze-thaw connector for waterborne self-assembly systems , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Michihiko KOSEKI,et al.  Cellular Robots Forming a Mechanical Structure , 2004, DARS.

[43]  Hod Lipson,et al.  Robotics: Self-reproducing machines , 2005, Nature.

[44]  Gerardo Beni,et al.  From Swarm Intelligence to Swarm Robotics , 2004, Swarm Robotics.

[45]  Prithviraj Dasgupta,et al.  ModRED : A Modular Self-Reconfigurable Robot For Autonomous Extra-terrestrial Exploration and Discovery , 2010 .

[46]  Jonas Neubert,et al.  Self-Soldering Connectors for Modular Robots , 2014, IEEE Transactions on Robotics.

[47]  Nile W. Hatch,et al.  Design Rules, Volume 1: The Power of Modularity , 2001 .

[48]  Marco Dorigo,et al.  Autonomous Self-Assembly in Swarm-Bots , 2006, IEEE Transactions on Robotics.

[49]  Mark Yim,et al.  Modular Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[50]  Auke Jan Ijspeert,et al.  Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot , 2014, Robotics Auton. Syst..

[51]  Gregory S. Chirikjian,et al.  M3Express: A low-cost independently-mobile reconfigurable modular robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[52]  Metin Sitti,et al.  Bonding methods for modular micro-robotic assemblies , 2013, 2013 IEEE International Conference on Robotics and Automation.

[53]  Kim B. Clark,et al.  Design Rules: The Power of Modularity , 2000 .