The E2 ubiquitin-conjugating enzyme HIP2 is a crucial regulator of quality control against mutant SOD1 proteotoxicity.

[1]  M. Selbach,et al.  The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63‐branched ubiquitin chains , 2021, The EMBO journal.

[2]  Seongman Kang,et al.  ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin , 2020, International journal of molecular sciences.

[3]  A. Gitler,et al.  ALS Genetics: Gains, Losses, and Implications for Future Therapies , 2020, Neuron.

[4]  G. Shaw,et al.  Recruitment of Ubiquitin within an E2 Chain Elongation Complex. , 2020, Biophysical journal.

[5]  I. Dikic,et al.  Cellular quality control by the ubiquitin-proteasome system and autophagy , 2019, Science.

[6]  A. Kidera,et al.  Crystal structure of the Ube2K/E2-25K and K48-linked di-ubiquitin complex provides structural insight into the mechanism of K48-specific ubiquitin chain synthesis. , 2018, Biochemical and biophysical research communications.

[7]  Shengdi Chen,et al.  Reduction of HIP2 expression causes motor function impairment and increased vulnerability to dopaminergic degeneration in Parkinson’s disease models , 2018, Cell Death & Disease.

[8]  Seongman Kang,et al.  Hip2 ubiquitin-conjugating enzyme has a role in UV-induced G1/S arrest and re-entry , 2018, Genes & Genomics.

[9]  In Young Lee,et al.  Amyotrophic lateral sclerosis-related mutant superoxide dismutase 1 aggregates inhibit 14-3-3-mediated cell survival by sequestration into the JUNQ compartment , 2017, Human molecular genetics.

[10]  Seongman Kang,et al.  Ataxin-1 regulates epithelial–mesenchymal transition of cervical cancer cells , 2017, Oncotarget.

[11]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis. , 2017, The New England journal of medicine.

[12]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[13]  S. Saxena,et al.  Proteostasis impairment in ALS , 2016, Brain Research.

[14]  C. Day,et al.  The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K , 2015, Scientific Reports.

[15]  Jimin Pei,et al.  LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins , 2015, Bioinform..

[16]  A. Nesvizhskii,et al.  Analysis of Protein Stability by the Cycloheximide Chase Assay. , 2015, Bio-protocol.

[17]  Jian Li,et al.  Broncho-Vaxom Attenuates Allergic Airway Inflammation by Restoring GSK3β-Related T Regulatory Cell Insufficiency , 2014, PloS one.

[18]  Song Hwa Jung,et al.  Hip2 ubiquitin-conjugating enzyme overcomes radiation-induced G2/M arrest. , 2013, Biochimica et biophysica acta.

[19]  Seongman Kang,et al.  Characterization and Hsp104-induced artificial clearance of familial ALS-related SOD1 aggregates. , 2013, Biochemical and biophysical research communications.

[20]  M. Swash,et al.  Controversies and priorities in amyotrophic lateral sclerosis , 2013, The Lancet Neurology.

[21]  F. Leeuwen,et al.  The ubiquitin proteasome system in neurodegenerative diseases: Culprit, accomplice or victim? , 2012, Progress in Neurobiology.

[22]  Matthew C. Kiernan,et al.  Clinical diagnosis and management of amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[23]  N. Maragakis,et al.  Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo , 2011, Proceedings of the National Academy of Sciences.

[24]  D. Morgan,et al.  Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. , 2010, Molecular cell.

[25]  Robert H. Brown,et al.  ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2 , 2010, Human molecular genetics.

[26]  J. Julien,et al.  Extracellular mutant SOD1 induces microglial‐mediated motoneuron injury , 2010, Glia.

[27]  Guanghui Wang,et al.  Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. , 2009, Human molecular genetics.

[28]  Seongman Kang,et al.  Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis , 2009, Experimental & Molecular Medicine.

[29]  I. Bertini,et al.  Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants , 2009, Proceedings of the National Academy of Sciences.

[30]  J. Rothstein,et al.  Current hypotheses for the underlying biology of amyotrophic lateral sclerosis , 2009, Annals of neurology.

[31]  Y. Kong,et al.  E2-25K/Hip-2 regulates caspase-12 in ER stress–mediated Aβ neurotoxicity , 2008, The Journal of cell biology.

[32]  Takanori Yokota,et al.  Als-linked Mutant Sod1 Induces Er Stress-and Ask1-dependent Motor Neuron Death by Targeting Derlin-1 -induced Cell Death Remains Controversial. Here We Show That Sod1 Mut Specifically Interacted with Derlin-1, a Component of Endoplasmic Reticulum (er)-associated Degradation (erad) Machinery and Trig , 2022 .

[33]  C. Behl,et al.  Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation. , 2008, Human molecular genetics.

[34]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[35]  Y. Shyu,et al.  Visualization of AP-1–NF-κB ternary complexes in living cells by using a BiFC-based FRET , 2008, Proceedings of the National Academy of Sciences.

[36]  I. Bertini,et al.  Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS , 2007, Proceedings of the National Academy of Sciences.

[37]  Sebastian A. Wagner,et al.  E3-independent monoubiquitination of ubiquitin-binding proteins. , 2007, Molecular cell.

[38]  R. Roos,et al.  Ubiquitin-conjugating enzyme E2-25K increases aggregate formation and cell death in polyglutamine diseases , 2007, Molecular and Cellular Neuroscience.

[39]  E. Kabashi,et al.  Failure of protein quality control in amyotrophic lateral sclerosis. , 2006, Biochimica et biophysica acta.

[40]  D. Rubinsztein,et al.  The roles of intracellular protein-degradation pathways in neurodegeneration , 2006, Nature.

[41]  T. Rapoport,et al.  E2-25K mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  C. Ross,et al.  What is the role of protein aggregation in neurodegeneration? , 2005, Nature Reviews Molecular Cell Biology.

[43]  J. Valentine,et al.  Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. , 2005, Annual review of biochemistry.

[44]  J. Agar,et al.  Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis , 2004, Journal of neurochemistry.

[45]  Søren Brunak,et al.  Analysis and prediction of leucine-rich nuclear export signals. , 2004, Protein engineering, design & selection : PEDS.

[46]  Y. Itoyama,et al.  NEDL1, a Novel Ubiquitin-protein Isopeptide Ligase for Dishevelled-1, Targets Mutant Superoxide Dismutase-1* , 2004, Journal of Biological Chemistry.

[47]  S. Kim,et al.  Essential Role of E2-25K/Hip-2 in Mediating Amyloid-β Neurotoxicity , 2003 .

[48]  R. Takahashi,et al.  Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis , 2002, Journal of neurochemistry.

[49]  Naoyuki Taniguchi,et al.  Dorfin Ubiquitylates Mutant SOD1 and Prevents Mutant SOD1-mediated Neurotoxicity* , 2002, The Journal of Biological Chemistry.

[50]  C. Pickart,et al.  Structure and function of ubiquitin conjugating enzyme E2-25K: the tail is a core-dependent activity element. , 1997, Biochemistry.

[51]  I. Fridovich,et al.  Superoxide radical and superoxide dismutases. , 1995, Annual review of biochemistry.

[52]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[53]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[54]  C. Pickart,et al.  A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. , 1990, The Journal of biological chemistry.