A dynamic look at a class of skew distributions. A model with scientometric applications

A theoretical model of repetitive events is presented and applied to the scientific publication process. Based on three simple postulates, a relation between population growth and distribution of authors by publication productivity in a scientific community is established. Predictions of the model are supported by empirical evidences.

[1]  R. Merton The Matthew Effect in Science , 1968, Science.

[2]  Herbert Feigl,et al.  Bibliography and index , 1969 .

[3]  Michael Woodroofe,et al.  On Zipf's law , 1975, Journal of Applied Probability.

[4]  I. K. Ravichandra Rao,et al.  The distribution of scientific productivity and social change , 1980, J. Am. Soc. Inf. Sci..

[5]  Alfred J. Lotka,et al.  The frequency distribution of scientific productivity , 1926 .

[6]  J. O. Irwin,et al.  The Generalized Waring Distribution Applied to Accident Theory , 1968 .

[7]  J. O. Irwin,et al.  The Generalized Waring Distribution. Part III , 1975 .

[8]  Russell C. Coile,et al.  Lotka's frequency distribution of scientific productivity , 1977, J. Am. Soc. Inf. Sci..

[9]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[10]  J. O. Irwin,et al.  The Place of Mathematics in Medical and Biological Statistics. , 1963 .

[11]  Samuel Kotz,et al.  A dictionary and bibliography of discrete distributions , 1968 .

[12]  Ronald E. Frank,et al.  Brand Choice as a Probability Process , 1962 .

[13]  L. Engwall Skew distributions and the sizes of business firms , 1976 .

[14]  S. D. Haitun,et al.  Stationary scientometric distributions , 1982, Scientometrics.

[15]  William Gray Potter,et al.  Lotka's Law Revisited , 1981 .

[16]  Evdokia Xekalaki,et al.  Chance Mechanisms for the Univariate Generalized Waring Distribution and Related Characterizations , 1981 .

[17]  H. A. Simon,et al.  Skew Distributions and the Size of Business Firms , 1977 .

[18]  J. Coleman Introduction to Mathematical Sociology , 1965 .

[19]  J. Tague The Success-Breeds-Success Phenomenon and Bibliometric Processes. , 1981 .

[20]  Daniel O'Connor,et al.  Empirical Laws, Theory Construction and Bibliometrics. , 1981 .

[21]  J. Vlachý,et al.  Frequency distributions of scientific performance a bibliography of Lotka's law and related phenomena , 1978, Scientometrics.

[22]  A. I. Yablonsky,et al.  On fundamental regularities of the distribution of scientific productivity , 2005, Scientometrics.

[23]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[24]  John J. Hubert General Bibliometric Models. , 1981 .

[25]  Roland Hjerppe,et al.  Supplement to a “Bibliography of bibliometrics and citation indexing & analysis” (Trita-lib-2013) , 1982, Scientometrics.

[26]  Ronald E. Wyllys,et al.  Empirical and Theoretical Bases of Zipf's Law , 1981 .