Influence of Al doping on the critical fields and gap values in magnesium diboride single crystals

The lower $({H}_{c1})$ and upper $({H}_{c2})$ critical fields of ${\mathrm{Mg}}_{1\ensuremath{-}x}{\mathrm{Al}}_{x}{\mathrm{B}}_{2}$ single crystals (for $x=0$, $0.1$, and $\ensuremath{\gtrsim}0.2$) have been deduced from local magnetization and specific heat measurements, respectively. We show that ${H}_{c1}$ and ${H}_{c2}$ are both decreasing with increasing doping content. The corresponding anisotropy parameter ${\ensuremath{\Gamma}}_{{H}_{c2}}(0)={H}_{c2}^{ab}(0)∕{H}_{c2}^{c}(0)$ value also decreases from $\ensuremath{\sim}5$ in pure ${\mathrm{MgB}}_{2}$ samples down to $\ensuremath{\sim}1.5$ for $x\ensuremath{\gtrsim}0.2$ whereas ${\ensuremath{\Gamma}}_{{H}_{c1}}(0)={H}_{c1}^{c}(0)∕{H}_{c1}^{ab}(0)$ remains on the order of 1 in all samples. The small and large gap values have been obtained by fitting the temperature dependence of the zero-field electronic contribution to the specific heat to the two-gap model for the three Al concentrations. Very similar values have also been obtained by point contact spectroscopy measurements. The evolution of those gaps with Al concentration suggests that both band filling and interband scattering effects are present.

[1]  M. Eisterer,et al.  Reversible magnetization of the two-band Mg B 2 superconductor: A phenomenological approach , 2005 .

[2]  P. Canfield,et al.  Difference between Al and C doping in anisotropic upper critical field development in MgB2 , 2005 .

[3]  J. Kortus,et al.  Band filling and interband scattering effects in MgB2: carbon versus aluminum doping. , 2004, Physical review letters.

[4]  V. Kogan,et al.  Field dependence of the vortex core size , 2004, cond-mat/0407673.

[5]  V. A. Stepanov,et al.  Critical field of Al-doped MgB2 samples: Correlation with the suppression of the sigma-band gap , 2004, cond-mat/0406377.

[6]  M. Eisterer,et al.  Magnetic field dependence of the reversible mixed-state properties of superconducting MgB 2 single crystals and the influence of artificial defects , 2004 .

[7]  K. H. Kim,et al.  Geometrical barriers and lower critical field in MgB2 single crystals , 2004 .

[8]  R. Ribeiro,et al.  Critical fluctuations in the carbon-doped magnesium diboride , 2004 .

[9]  K. H. Kim,et al.  Anisotropies of the lower and upper critical fields in MgB2 single crystals. , 2004, Physical review letters.

[10]  P. Canfield,et al.  Systematic effects of carbon doping on the superconducting properties of Mg(B1-xCx)(2). , 2003, Physical review letters.

[11]  V. Kogan,et al.  Penetration-depth anisotropy in two-band superconductors , 2003, cond-mat/0311331.

[12]  M. Zhitomirsky,et al.  Ginzburg-Landau theory of vortices in a multigap superconductor , 2003, cond-mat/0309372.

[13]  A. Palenzona,et al.  Effects of Al doping on the normal and superconducting properties of MgB 2 : A specific heat study , 2003 .

[14]  E. Brandt Properties of the ideal Ginzburg-Landau vortex lattice , 2003, cond-mat/0304237.

[15]  R. Ribeiro,et al.  Carbon doping of superconducting magnesium diboride , 2002, cond-mat/0210530.

[16]  K. H. Kim,et al.  Superconducting transition and phase diagram of single-crystal MgB2 , 2002, cond-mat/0203337.

[17]  R. Fisher,et al.  Specific heat of Mg11B2: evidence for a second energy gap. , 2001, Physical review letters.

[18]  A. Jansen,et al.  Point-contact spectroscopy of MgB2 , 2002, cond-mat/0211544.

[19]  S. Tajima,et al.  Specific heat of single crystal MgB2: a two-band superconductor with two different anisotropies. , 2002, Physical review letters.

[20]  H.S.Lee,et al.  Anisotropy of the upper critical field and critical current in single crystal MgB2 , 2002, cond-mat/0206231.

[21]  J. Kortus,et al.  Multiband model for penetration depth in MgB2 , 2002, cond-mat/0205154.

[22]  A. Wisniewski,et al.  Temperature and field dependence of the anisotropy of MgB2. , 2001, Physical review letters.

[23]  Yuxing Wang,et al.  Phenomenological two-gap model for the specific heat of MgB2 , 2001, cond-mat/0107196.

[24]  P. Canfield,et al.  Determination of superconducting anisotropy from magnetization data on random powders as applied to LuNi 2 B 2 C , YNi 2 B 2 C , and MgB 2 , 2001, cond-mat/0106577.

[25]  D. Fruchart,et al.  Evidence for two superconducting energy gaps in MgB(2) by point-contact spectroscopy. , 2001, Physical review letters.

[26]  R. Fisher,et al.  Specific heat of Mg11B2 , 2003 .

[27]  J Kortus,et al.  Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps. , 2001, Physical review letters.

[28]  Jens Kortus,et al.  Beyond Eliashberg Superconductivity in MgB2 , 2001 .

[29]  E. Brandt GEOMETRIC BARRIER AND CURRENT STRING IN TYPE-II SUPERCONDUCTORS OBTAINED FROM CONTINUUM ELECTRODYNAMICS , 1999 .

[30]  Larkin,et al.  Geometrical barriers in high-temperature superconductors. , 1994, Physical review letters.

[31]  J. R. Clem Fundamentals of vortices in the high-temperature superconductors , 1992 .

[32]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[33]  G. Seidel,et al.  Steady-State, ac-Temperature Calorimetry , 1968 .