Approche déterministe du séchage des avivés de résineux de fortes épaisseurs pour proposer des conduites industrielles adaptées

Les secheurs connaissent des difficultes pour secher les avives d'epicea de fortes epaisseurs avec les sechoirs industriels classiques. Notre etude a pour ambition d'ameliorer les connaissances sur le sechage des avives de resineux de fortes epaisseurs par une approche deterministe. Le code numerique TransPore, developpe par Patrick Perre, de part sa capacite a simuler les transferts couples de chaleur et de masse dans une planche de bois, est place au cœur de notre approche. Notre demarche scientifique a necessite la mise en place de deux outils : - un dispositif experimental a ete mis en place pour obtenir des informations descriptives sur les transferts de masse s'effectuant dans la planche au cours de son sechage, et sur les contraintes mecaniques engendrees par le sechage. Ce dispositif mesure en continu l'epaisseur des avives, les fentes de surface, et le champ de teneur en eau dans la planche par attenuation de rayons X ; - une unite de calcul des contraintes de sechage a ete developpee et greffee a TransPore (version 1D) pour aborder l'aspect qualitatif du sechage. La formulation mecanique adoptee est monodimensionnelle, et elle prend en compte la courbure eventuelle de la planche pour, par exemple, simuler un sechage dissymetrique. Les resultats experimentaux ont ensuite ete confrontes aux resultats theoriques pour confirmer et valider les resultats predits par la simulation numerique. La comparaison s'est averee souvent tres probante, tant au niveau des transferts couples de chaleur et de masse qu'au niveau de l'evaluation des contraintes de sechage. Ce travail se termine par l'utilisation du code TransPore comme outil d'aide a la comprehension des mecanismes couples qui rendent le sechage des fortes epaisseurs particulierement difficile. Cet outil a montre egalement sa capacite a guider ses utilisateurs dans le developpement de nouvelles conduites de sechage. Cette derniere application ouvre une voie prometteuse vers l'optimisation des tables de sechage.

[1]  Peter Carlsson,et al.  OPTIMIZATION OF DRYING SCHEDULES ADAPTED FOR A MIXTURE OF BOARDS WITH DISTRIBUTION OF SAPWOOD AND HEARTWOOD , 2002 .

[2]  E. M. Wengert,et al.  Dry kiln schedules for commercial woods: temperate and tropical. , 1988 .

[3]  T. Toratti,et al.  Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads , 2000, Wood Science and Technology.

[4]  W. Cǒté,et al.  Factors affecting permeability and pit aspiration in coniferous sapwood , 1968, Wood Science and Technology.

[5]  T. Toratti,et al.  Mechanical response of wood perpendicular to grain when subjected to changes of humidity , 2002, Wood Science and Technology.

[6]  A. Ranta-Maunus The viscoelasticity of wood at varying moisture content , 1975, Wood Science and Technology.

[7]  Patrick Perré,et al.  Advances in transport phenomena during convective drying with superheated steam and moist air , 1993 .

[8]  D. Bentz,et al.  Preliminary observations of water movement in cement pastes during curing using X-ray absorption , 2000 .

[9]  P. Wiberg,et al.  Moisture flux determination in wood during drying above fibre saturation point using CT-scanning and digital image processing , 1999, Holz als Roh- und Werkstoff.

[10]  Patrick Perré,et al.  A Control-Volume procedure compared with the Finite-Element method for calculating Stress and Strain during Wood Drying , 1995 .

[11]  Patrick Perré,et al.  A Physical and Mechanical Model Able to Predict the Stress Field in Wood over a Wide Range of Drying Conditions , 2004 .

[12]  Patrick Perré,et al.  A large displacement formulation for anisotropic constitutive laws , 1999 .

[13]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[14]  C. Plummer,et al.  Transient moisture effects on wood creep , 2002, Wood Science and Technology.

[15]  Frank C. Beall,et al.  Ultrasonic Methods to Monitor and Control Lumber Drying , 2002 .

[16]  C. Bengtsson Creep in sawn spruce exposed to varying humidity : influence of raw material parameters , 1997 .

[17]  Stavros Avramidis,et al.  The Effect of Vertical Air Gaps, Air Velocities and Fan Revolutions on the Drying Characteristics of Thick Pacific Coast Hemlock Lumber , 1997 .

[18]  R. Keey,et al.  Model fitting for visco-elastic creep of Pinus radiata during kiln drying , 2000, Wood Science and Technology.

[19]  Patrick Perreé,et al.  PROTOTYPE HIGH TEMPERATURE/HIGH PRESSURE KILN FOR THE EVALUATION OF WOOD DRYING SCHEDULES , 2000 .

[20]  S. Pang,et al.  EFFECTS OF SAWING PATTERN ON LUMBER DRYING: MODEL SIMULATION AND EXPERIMENTAL INVESTIGATION , 2002 .

[21]  Jarl-Gunnar Salin Information transfer to kiln operators in the form of drying simulation models , 2001 .

[22]  Timothy A. G. Langrish,et al.  A high-temperature drying model for softwood timber , 2000 .

[23]  A. S. Brooke,et al.  The simulation of stresses and strains in the drying of Pinus radiata sapwood: the effects of board geometry , 1997 .

[24]  G. M. Irvine,et al.  The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis , 1984 .

[25]  Ian Turner,et al.  A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media , 1999 .

[26]  A. Hanhijärvi,et al.  Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying Part II. Experimental results under constant conditions (viscoelastic creep) , 1999, Holz als Roh- und Werkstoff.

[27]  R. Silvennoinen,et al.  Observation of Development of Microcracks on Wood Surface Caused by Drying Stresses , 2003 .

[28]  I. Turner A two-dimensional orthotropic model for simulating wood drying processes , 1996 .

[29]  P. Wiberg,et al.  HEAT AND MASS TRANSFER DURING SAPWOOD DRYING ABOVE THE FIBRE SATURATION POINT , 2000 .

[30]  Staffan Svensson,et al.  Stress-Strain Relationship of Drying Wood. Part 2: Verification of a One-Dimensional Model and Development of a Two-Dimensional Model , 1997 .

[31]  D. Hunt Dimensional changes and creep of spruce, and consequent model requirements , 1997, Wood Science and Technology.

[32]  H.S.F. Awadalla,et al.  Mathematical modelling and experimental verification of wood drying process , 2004 .

[33]  Diego Elustondo,et al.  STOCHASTIC NUMERICAL MODEL FOR RADIO FREQUENCY VACUUM DRYING OF TIMBERS , 2002 .

[34]  Annika Mårtensson,et al.  Mechanical Behaviour of Wood Exposed to Humidity Variations. , 1992 .

[35]  Shusheng Pang,et al.  MODELLING OF STRESS DEVELOPMENT DURING DRYING AND RELIEF DURING STEAMING IN PINUS RADIATA LUMBER , 2000 .

[36]  P. Stroeven,et al.  X-ray absorption study of drying cement paste and mortar , 2003 .

[37]  Alfred J. Stamm,et al.  Principles of Wood Science and Technology , 2013, Springer Berlin Heidelberg.

[38]  P. U. A. Grossman,et al.  Requirements for a model that exhibits mechano-sorptive behaviour , 1976, Wood Science and Technology.

[39]  J. Salin Determination of the most economical drying schedule and air velocity in softwood drying , 2001 .

[40]  Anders Rosenkilde Moisture content profiles and surface phenomena during drying of wood , 2002 .