Intrinsic thermal conductivities and size effect of alloys of wurtzite AlN, GaN, and InN from first-principles
暂无分享,去创建一个
Xiaobing Luo | Jinlong Ma | Wu Li | Wu Li | Xiaobing Luo | Jinlong Ma
[1] N. Mingo,et al. Absence of Casimir regime in two-dimensional nanoribbon phonon conduction , 2011, 1810.10681.
[2] Alexander A. Balandin,et al. Temperature dependence of thermal conductivity of AlxGa1−xN thin films measured by the differential 3ω technique , 2004 .
[3] Natalio Mingo,et al. Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .
[4] Xuan Wang,et al. Control performance of a single-chip white light emitting diode by adjusting strain in InGaN underlying layer , 2009 .
[5] Isao Tanaka,et al. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .
[6] Ray-Hua Horng,et al. High-quality InGaN∕GaN heterojunctions and their photovoltaic effects , 2008 .
[7] Gernot Deinzer,et al. Ab initio theory of the lattice thermal conductivity in diamond , 2009 .
[8] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[9] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[10] T. L. Reinecke,et al. Ab initio thermal transport in compound semiconductors , 2013 .
[11] D. Broido,et al. Thermal conductivity and large isotope effect in GaN from first principles. , 2012, Physical review letters.
[12] Boris Kozinsky,et al. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.
[13] Gang Zhang,et al. Tunable thermal conductivity of Si1−xGex nanowires , 2009 .
[14] Heinz Schulz,et al. Crystal structure refinement of AlN and GaN , 1977 .
[15] Wu Li,et al. Intrinsic thermal conductivity and its anisotropy of wurtzite InN , 2014 .
[16] Wu Li,et al. ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..
[17] Y. Park,et al. Monolithic InGaN-based white light-emitting diodes with blue, green, and amber emissions , 2008 .
[18] N. Mingo,et al. Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .
[19] Y. Kuo,et al. Polarization-dependent optical characteristics of violet InGaN laser diodes , 2008 .
[20] Rajendra Dahal,et al. Thermoelectric properties of InxGa1−xN alloys , 2008 .
[21] Steven A. Ringel,et al. Direct comparison of traps in InAlN/GaN and AlGaN/GaN high electron mobility transistors using constant drain current deep level transient spectroscopy , 2013 .
[22] A. Macrander,et al. Phonons in Wurtzite Aluminum Nitride , 1999 .
[23] Zongyang Hu,et al. Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors , 2012 .
[24] Wei Liu,et al. Generation of amber III-nitride based light emitting diodes by indium rich InGaN quantum dots with InGaN wetting layer and AlN encapsulation layer , 2010 .
[25] Effects of point defects on thermal and thermoelectric properties of InN , 2011 .
[26] Natalio Mingo,et al. Thermal conductivity of diamond nanowires from first principles , 2012 .
[27] Alexander A. Balandin,et al. Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .
[28] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[29] Natalio Mingo,et al. Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .
[30] M. Cardona,et al. Phonon dispersion curves in wurtzite-structure GaN determined by inelastic x-ray scattering. , 2001, Physical review letters.
[31] Wu Li,et al. Alloy enhanced anisotropy in the thermal conductivity of SixGe1−x nanowires , 2013 .
[32] Oliver Ambacher,et al. Raman spectra of isotopic GaN , 1997 .
[33] B. C. Daly,et al. Optical pump-and-probe measurement of the thermal conductivity of nitride thin films , 2002 .
[34] Jing Zhang,et al. Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition , 2010 .
[35] J. Shim,et al. Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells , 2013 .
[36] I. Ferguson,et al. Suppression of thermal conductivity in InxGa1−xN alloys by nanometer-scale disorder , 2013 .
[37] S. Denbaars,et al. Thermoelectric properties of lattice matched InAlN on semi-insulating GaN templates , 2012 .
[38] T. Paszkiewicz,et al. Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .
[39] James S. Speck,et al. High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .
[40] An InGaN-based horizontal-cavity surface-emitting laser diode , 2004 .
[41] Junichiro Shiomi,et al. Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .
[42] J. Bluet,et al. Current deep level transient spectroscopy analysis of AlInN/GaN high electron mobility transistors: Mechanism of gate leakage , 2010 .
[43] S. Denbaars,et al. High temperature thermoelectric properties of optimized InGaN , 2011 .
[44] S. Nakamura,et al. Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .