Intrinsic thermal conductivities and size effect of alloys of wurtzite AlN, GaN, and InN from first-principles

Despite the fact the alloys of wurtzite AlN, GaN, and InN are widely used in electronics, the studies on their thermal conductivities (κ) are inadequate, and the intrinsic limits are still unknown. In this work, the intrinsic κ of alloys and their films are calculated from first-principles within the virtual crystal treatment. The κ of alloys are strongly suppressed even by a small amount of alloying. For instance, with only 1% alloying of Al or In, κ of GaN decreases about 60%. At relatively high alloying, with concentration between 0.2 and 0.8, the κ of alloys are not significantly changed. At room temperature, the minimal a-axis κ are about 18, 22, and 8 W m−1 K−1, while the minimal c-axis κ are about 22, 27, and 10 W m−1 K−1 for AlxGa1−xN, InxGa1−xN, and InxAl1−xN, respectively. The size effect in films can persist up to a few tens of micrometers, and κ can be reduced by half in about 100 nm thick films.

[1]  N. Mingo,et al.  Absence of Casimir regime in two-dimensional nanoribbon phonon conduction , 2011, 1810.10681.

[2]  Alexander A. Balandin,et al.  Temperature dependence of thermal conductivity of AlxGa1−xN thin films measured by the differential 3ω technique , 2004 .

[3]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[4]  Xuan Wang,et al.  Control performance of a single-chip white light emitting diode by adjusting strain in InGaN underlying layer , 2009 .

[5]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[6]  Ray-Hua Horng,et al.  High-quality InGaN∕GaN heterojunctions and their photovoltaic effects , 2008 .

[7]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[8]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[9]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[10]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[11]  D. Broido,et al.  Thermal conductivity and large isotope effect in GaN from first principles. , 2012, Physical review letters.

[12]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[13]  Gang Zhang,et al.  Tunable thermal conductivity of Si1−xGex nanowires , 2009 .

[14]  Heinz Schulz,et al.  Crystal structure refinement of AlN and GaN , 1977 .

[15]  Wu Li,et al.  Intrinsic thermal conductivity and its anisotropy of wurtzite InN , 2014 .

[16]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[17]  Y. Park,et al.  Monolithic InGaN-based white light-emitting diodes with blue, green, and amber emissions , 2008 .

[18]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[19]  Y. Kuo,et al.  Polarization-dependent optical characteristics of violet InGaN laser diodes , 2008 .

[20]  Rajendra Dahal,et al.  Thermoelectric properties of InxGa1−xN alloys , 2008 .

[21]  Steven A. Ringel,et al.  Direct comparison of traps in InAlN/GaN and AlGaN/GaN high electron mobility transistors using constant drain current deep level transient spectroscopy , 2013 .

[22]  A. Macrander,et al.  Phonons in Wurtzite Aluminum Nitride , 1999 .

[23]  Zongyang Hu,et al.  Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors , 2012 .

[24]  Wei Liu,et al.  Generation of amber III-nitride based light emitting diodes by indium rich InGaN quantum dots with InGaN wetting layer and AlN encapsulation layer , 2010 .

[25]  Effects of point defects on thermal and thermoelectric properties of InN , 2011 .

[26]  Natalio Mingo,et al.  Thermal conductivity of diamond nanowires from first principles , 2012 .

[27]  Alexander A. Balandin,et al.  Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .

[30]  M. Cardona,et al.  Phonon dispersion curves in wurtzite-structure GaN determined by inelastic x-ray scattering. , 2001, Physical review letters.

[31]  Wu Li,et al.  Alloy enhanced anisotropy in the thermal conductivity of SixGe1−x nanowires , 2013 .

[32]  Oliver Ambacher,et al.  Raman spectra of isotopic GaN , 1997 .

[33]  B. C. Daly,et al.  Optical pump-and-probe measurement of the thermal conductivity of nitride thin films , 2002 .

[34]  Jing Zhang,et al.  Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition , 2010 .

[35]  J. Shim,et al.  Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells , 2013 .

[36]  I. Ferguson,et al.  Suppression of thermal conductivity in InxGa1−xN alloys by nanometer-scale disorder , 2013 .

[37]  S. Denbaars,et al.  Thermoelectric properties of lattice matched InAlN on semi-insulating GaN templates , 2012 .

[38]  T. Paszkiewicz,et al.  Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .

[39]  James S. Speck,et al.  High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .

[40]  An InGaN-based horizontal-cavity surface-emitting laser diode , 2004 .

[41]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[42]  J. Bluet,et al.  Current deep level transient spectroscopy analysis of AlInN/GaN high electron mobility transistors: Mechanism of gate leakage , 2010 .

[43]  S. Denbaars,et al.  High temperature thermoelectric properties of optimized InGaN , 2011 .

[44]  S. Nakamura,et al.  Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .