Bearings-Only Target Motion Analysis via Instrumental Variable Estimation

This paper deals with the instrumental variable (IV) estimation for the problem of target motion analysis from bearing-only measurements (BO-TMA). By taking asymptotical analysis of the IV estimation, a systematic method for developing consistent IV estimate and the sufficient condition for its asymptotical normality are proposed. The asymptotical covariance of IV estimate is also derived explicitly which can be used to evaluate its performance. These results generalize the previous studies and enhance the application of the IV estimation in target tracking. Numerical examples are shown to verify the theoretical results.

[1]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[2]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[3]  Thiagalingam Kirubarajan,et al.  Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem , 2002, SPIE Defense + Commercial Sensing.

[4]  K. C. Ho,et al.  An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis , 2006, IEEE Transactions on Signal Processing.

[5]  Y. Bar-Shalom,et al.  Comments on "Low observable target motion analysis using amplitude information" [with reply] , 1998 .

[6]  K. Gong,et al.  Position and Velocity Estimation Via Bearing Observations , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[7]  J. Cadre,et al.  On the convergence of iterative methods for bearings-only tracking , 1999 .

[8]  Kutluyil Dogançay Passive emitter localization using weighted instrumental variables , 2004, Signal Process..

[9]  Kutluyil Dogançay,et al.  On the bias of linear least squares algorithms for passive target localization , 2004, Signal Process..

[10]  K. Gong,et al.  Fundamental properties and performance of conventional bearings-only target motion analysis , 1984 .

[11]  Kutluyil Dogançay,et al.  On the efficiency of a bearings-only instrumental variable estimator for target motion analysis , 2005, Signal Process..

[12]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[13]  Y. Bar-Shalom,et al.  Low observable target motion analysis using amplitude information , 1995 .

[14]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[15]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[16]  Michael P. Murray,et al.  Instrumental Variables , 2011, International Encyclopedia of Statistical Science.

[17]  J. Le Cadre,et al.  Discrete-time observability and estimability analysis for bearings-only target motion analysis , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Yiu-Tong Chan,et al.  Bearings-only and Doppler-bearing tracking using instrumental variables , 1992 .

[19]  Y. Bar-Shalom,et al.  Low observable target motion analysis using amplitude information , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[20]  S. Nardone,et al.  A closed-form solution to bearings-only target motion analysis , 1997 .

[21]  Kutluyıl Doğançay,et al.  Bias compensation for the bearings-only pseudolinear target track estimator , 2006, IEEE Transactions on Signal Processing.

[22]  Dinh Tuan Pham Some Quick and Efficient Methods for Target Motion Analysis , 1993 .