CHEMISTRY OF SINGLET OXYGEN—48. ISOLATION and STRUCTURE OF THE PRIMARY PRODUCT OF PHOTOOXYGENATION OF 3,5‐DI‐t‐BUTYL CATECHOL

The dye‐sensitized photooxygenation of t‐butyl substituted catechols has been investigated. The primary product from 3,5‐di‐t‐butyl catechol has been isolated and shown to be a hydroperoxydienone by single crystal X‐ray diffraction. The absence of sensitizer effects and the faster reaction rate in polar solvents suggest that the reaction proceeds with singlet oxygen as the primary oxygenating species. Charge‐transfer or full electron‐transfer from the catechol to singlet oxygen is probably involved. Substituent effects are in agreement with this mechanism. The products from thermal breakdown of the hydroperoxydienone are inconsistent with a Baeyer‐Villiger mechanism.

[1]  P. Main,et al.  The application of phase relationships to complex structures. III. The optimum use of phase relationships , 1971 .

[2]  C. Foote,et al.  Chemistry of superoxide ion. I. Oxidation of 3,5-di-tert-butylcatechol with KO2. , 1976, Journal of the American Chemical Society.

[3]  T. R. Demmin,et al.  Preparation of muconic acid anhydrides. Characterization of the 1-oxacyclohepta-3,5-diene-2,7-dione structure , 1980 .

[4]  R. L. Clough,et al.  Chemistry of singlet oxygen. 30. The unstable primary product of tocopherol photooxidation , 1979 .

[5]  D. T. Sawyer,et al.  Does superoxide ion oxidize catechol, .alpha.-tocopherol, and ascorbic acid by direct electron transfer? , 1980 .

[6]  D. T. Sawyer,et al.  Redox chemistry of metal-catechol complexes in aprotic media. 1. Electrochemistry of substituted catechols and their oxidation products , 1981 .

[7]  C. Foote,et al.  Chemistry of singlet oxygen. , 1968 .

[8]  H. Musso,et al.  Zur Autoxydation von Resorcinderivaten. Über die Bildung von Hydroxy-tert.-butyl-chinonen und deren Abbau zu Cyclopentenon-Derivaten durch Alkali , 1969 .

[9]  Christopher S. Foote,et al.  CHEMISTRY OF SINGLET OXYGEN—XXVI. PHOTOOXYGENATION OF PHENOLSy † , 1978 .

[10]  G. A. Hamilton 10 – CHEMICAL MODELS AND MECHANISMS FOR OXYGENASES , 1974 .

[11]  M. Nozaki 4 – NONHEME IRON DIOXYGENASE , 1974 .

[12]  H. Musso,et al.  Über Orceinfarbstoffe, XXIII1). Die Autoxydation des 4.6-Di-tert.-butyl-resorcins† , 1965 .

[13]  E. W. Morris No , 1923, The Hospital and health review.

[14]  C. Foote,et al.  CHEMISTRY OF SUPEROXIDE ION. I. OXIDATION OF 3,5‐DI‐TERT‐BUTYLCATECHOL WITH POTASSIUM SUPEROXIDE , 1976 .

[15]  I. Saito,et al.  Photoinduced reactions—LVII , 1972 .

[16]  H. Musso,et al.  Über Orceinfarbstoffe, XXII: Die Autoxydation des 5‐tert.‐Butyl‐resorcins , 1965 .

[17]  P. Ogilby,et al.  Chemistry of singlet oxygen. 42. Effect of solvent, solvent isotopic substitution, and temperature on the lifetime of singlet molecular oxygen (1.DELTA.g) , 1983 .

[18]  I. Saito,et al.  Photoinduced reactions—LVIII , 1972 .

[19]  O. Hayaishi,et al.  MECHANISM OF THE PYROCATECHASE REACTION , 1955 .

[20]  H. Musso,et al.  Zersetzungsmechanismus des 6-Methoxy-1.3-di-tert.-butylchinolhydroperoxids , 1968 .

[21]  H. Musso,et al.  Über Orceinfarbstoffe, XXIV. Über den Autoxydationsmechanismus bei Resorcinderivaten , 1965 .

[22]  A. Nishinaga,et al.  Base Catalyzed Oxygenation of 3,5-Di-t-butylpyrocatechol and Its Related Compounds , 1974 .

[23]  P. Ogilby,et al.  CHEMISTRY OF SINGLET OXYGEN. 42. EFFECT OF SOLVENT, SOLVENT ISOTOPIC SUBSTITUTION, AND TEMPERATURE ON THE LIFETIME OF SINGLET MOLECULAR OXYGEN (1ΔG) , 1983 .

[24]  A. Nishinaga,et al.  Oxidative ring cleavage of 3,5-di-t-butyl-catechol and -o-benzoquinone by base-catalyzed oxygenation. , 1976 .