Lutetia surface reconstruction and uncertainty analysis

Abstract Multiple views of Lutetia taken from OSIRIS NAC payload can be used to perform a metric reconstruction of its shape. In this work a general photogrammetric processing pipeline is described and a detailed uncertainty analysis is performed according with the standard metrological procedures. The uncertainty associated with the following quantities are highlighted and evaluated: intrinsic and extrinsic parameters of the multi-view system; the selected image feature detector and descriptor, which contribute to uncertainties associated with the used feature positions in each image plane; the lighting of the scene, which causes a not negligible uncertainty contribution to 2D positions in the image plane. The Bundle Adjustment, at the core of the reconstruction process, allows the assignment of the covariance of each input parameter and the estimation of derived 3D points covariance. The output covariance matrices represent the spatial uncertainty (magnitude and direction) of each reconstructed point and can be used to derive bounds on the uncertainty of other products as dense surface models and other physical parameters. Presented model of Lutetia is derived using 14 NAC images at the closest approach, 8042 features are tracked between consecutive frames and a final point cloud of 2590 points is produced. From the adjusted camera parameters a dense model with (approximatively) 1.5 million of points is derived using two views. The dense model has a resolution which is approximatively 120 m/px and contains the surface topography up to 1 km scale.

[1]  Clark R. Chapman,et al.  Physical properties of the ESA Rosetta target asteroid (21) Lutetia , 2010, Astronomy & Astrophysics.

[2]  Gunnar Farnebäck,et al.  Two-Frame Motion Estimation Based on Polynomial Expansion , 2003, SCIA.

[3]  E. Standish Dynamical Reference Frame — Current Relevance and Future Prospects , 2000 .

[4]  Mark S. Robinson,et al.  The Apollo Digtal Image Archive: New Research and Data Products , 2008 .

[5]  Yutaka Takano,et al.  The SELENE project and Japanese future lunar exploration , 2005 .

[6]  Preliminary Results of the SELENE Terrain Camera , 2009 .

[7]  V. Nagasubramanian,et al.  Rigorous Photogrammetric Processing of Chandrayaan-1 Terrain Mapping Camera (TMC) Images for Lunar Topographic Mapping , 2011 .

[8]  Miguel Almeida,et al.  COVERAGE AND POINTING ACCURACY OF SMART-1/AMIE IMAGES , 2008 .

[9]  Stubbe F. Hviid,et al.  Multi-color, rotationally resolved photometry of asteroid 21 Lutetia from OSIRIS/Rosetta observations , 2010 .

[10]  B. Carry,et al.  Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry , 2010 .

[11]  C. Pattichis,et al.  Brain MR image normalization in texture analysis of multiple sclerosis , 2009 .

[12]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[13]  R. Unbehauen,et al.  Estimation of image noise variance , 1999 .

[14]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[15]  M E Davies,et al.  Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor. , 1998, Science.

[16]  Shih-Ming Yang,et al.  A fast method for image noise estimation using Laplacian operator and adaptive edge detection , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[17]  Guo Li,et al.  Method of DEM Generation Based on Three-Line Array CCD Lunar Images , 2011, 2011 International Symposium on Image and Data Fusion.

[19]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[20]  S. Debei,et al.  Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System , 2011, Science.

[21]  Ping-Sing Tsai,et al.  Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Xianlin Huang,et al.  Fractal-Based Lunar Terrain Surface Modeling for the Soft Landing Navigation , 2009, 2009 Second International Conference on Intelligent Computation Technology and Automation.

[23]  M. Vehvilainen,et al.  New method for noise estimation in images , 2005 .

[24]  Zoran Sodnik,et al.  Science objectives and first results from the SMART-1/AMIE multicolour micro-camera , 2006 .

[25]  R. Kirk,et al.  High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images , 2003 .

[26]  Michael Broxton,et al.  3D Lunar Terrain Reconstruction from Apollo Images , 2009, ISVC.

[27]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[28]  Haruo Kawasaki,et al.  Lunar topography: Statistical analysis of roughness on a kilometer scale , 2008 .

[29]  M. Malin,et al.  Mars Observer camera , 1992 .

[30]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[32]  Topography of Candidate Phoenix Landing Sites from MOC Images , 2006 .

[33]  R. Kirk,et al.  High Resolution Mapping of the Lunar South Pole-Aitken Basin Interior , 2010 .

[34]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[35]  Manabu Kato,et al.  The SELENE mission: Goals and status , 2003 .

[36]  Akira Iwasaki,et al.  Lack of Exposed Ice Inside Lunar South Pole Shackleton Crater , 2008, Science.

[37]  A. S. Kiran Kumar,et al.  Terrain mapping camera for Chandrayaan-1 , 2005 .

[38]  Tinku Acharya,et al.  Image Processing: Principles and Applications , 2005, J. Electronic Imaging.

[39]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[40]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[41]  A. R. Chowdhury,et al.  Terrain Mapping Camera: A stereoscopic high-resolution instrument on Chandrayaan-1 , 2009 .

[42]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[43]  Wei Zuo,et al.  The global image of the Moon obtained by the Chang’E-1: Data processing and lunar cartography , 2010 .

[44]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[45]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[47]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[48]  Jiang Jingshan,et al.  Scientific objectives and payloads of Chang’E-1 lunar satellite , 2005 .

[49]  Andrea Accomazzo,et al.  The flyby of Rosetta at asteroid Šteins – mission and science operations , 2010 .

[50]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision: From Images to Geometric Models , 2003 .

[51]  Richard D. Starr,et al.  The MESSENGER mission to Mercury: scientific payload , 2001 .

[52]  F. Scholten,et al.  GLD100 — The Global Lunar 100 Meter Raster DTM from LROC WAC Stereo Models , 2011 .

[53]  J. Ping,et al.  Chang’E-1 orbiter discovers a lunar nearside volcano: YUTU Mountain , 2009 .

[54]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[55]  M. Kaasalainen,et al.  The shape and physical properties of asteroid 21 Lutetia from OSIRIS images , 2010 .

[56]  J. Christou,et al.  The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia , 2010, 1005.5353.

[57]  J. Muller,et al.  Evaluating planetary digital terrain models - the HRSC DTM test , 2007 .