Efficient and Generic Algorithm for Rigorous Integration Forward in Time of dPDEs: Part I

We propose an efficient and generic algorithm for rigorous integration forward in time of partial differential equations written in the Fourier basis. By rigorous integration we mean a procedure which operates on sets and return sets which are guaranteed to contain the exact solution. The presented algorithm generates, in an efficient way, normalized derivatives which are used by the Lohner algorithm to produce a rigorous bound. The algorithm has been successfully tested on several partial differential equations (PDEs) including the Burgers equation, the Kuramoto-Sivashinsky equation, and the Swift-Hohenberg equation. The problem of rigorous integration in time of partial differential equations is a problem of large computational complexity and efficient algorithms are required to deal with PDEs on higher dimensional domains, like the Navier-Stokes equation. Technicalities regarding the various optimization techniques implemented in the software used in this paper will be reported elsewhere.

[1]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[2]  Konstantin Mischaikow,et al.  Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..

[3]  Jean-Philippe Lessard,et al.  Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.

[4]  Yoshitaka Watanabe,et al.  A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems , 2009, Numerische Mathematik.

[5]  C. Bendtsen FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .

[6]  Tomasz Kapela,et al.  A Lohner-type algorithm for control systems and ordinary differential inclusions , 2007, 0712.0910.

[7]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[8]  Konstantin Mischaikow,et al.  Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .

[9]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[10]  E. B. Vinokurov,et al.  Calculus of Approximations in Electrotechnical Engineering , 2011 .

[11]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[12]  G. S. Patterson,et al.  Spectral Calculations of Isotropic Turbulence: Efficient Removal of Aliasing Interactions , 1971 .

[13]  J. G. Heywood,et al.  A Numerically Based Existence Theorem for the Navier-Stokes Equations , 1999 .

[14]  Y. Hiraoka,et al.  An efficient estimate based on FFT in topological verification method , 2007 .

[15]  D. Wilczak,et al.  $C^r$-Lohner algorithm , 2007, 0704.0720.

[16]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[17]  Multiple Solutions for a Semilinear Boundary Value Problem: A Computational Multiplicity Proof , 2000 .

[18]  Piotr Zgliczynski,et al.  -lohner Algorithm , 2022 .

[19]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .

[20]  中尾 充宏 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .

[21]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[22]  C. Temperton Fast Mixed-Radix Real Fourier Transforms , 1983 .

[23]  Jacek Cyranka Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof , 2013 .

[24]  Hans Koch,et al.  Integration of Dissipative Partial Differential Equations: A Case Study , 2010, SIAM J. Appl. Dyn. Syst..

[25]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[26]  P. Zgliczynski,et al.  Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .

[27]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[28]  Piotr Zgliczynski,et al.  Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof , 2002, SIAM J. Appl. Dyn. Syst..

[29]  Piotr Zgliczynski,et al.  C1 Lohner Algorithm , 2002, Found. Comput. Math..

[30]  Y. Hiraoka,et al.  Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation , 2005 .

[31]  C. Temperton Self-sorting mixed-radix fast Fourier transforms , 1983 .

[32]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..