Efficient and Generic Algorithm for Rigorous Integration Forward in Time of dPDEs: Part I
暂无分享,去创建一个
[1] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[2] Konstantin Mischaikow,et al. Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..
[3] Jean-Philippe Lessard,et al. Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.
[4] Yoshitaka Watanabe,et al. A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems , 2009, Numerische Mathematik.
[5] C. Bendtsen. FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .
[6] Tomasz Kapela,et al. A Lohner-type algorithm for control systems and ordinary differential inclusions , 2007, 0712.0910.
[7] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[8] Konstantin Mischaikow,et al. Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .
[9] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[10] E. B. Vinokurov,et al. Calculus of Approximations in Electrotechnical Engineering , 2011 .
[11] Angel Jorba,et al. A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..
[12] G. S. Patterson,et al. Spectral Calculations of Isotropic Turbulence: Efficient Removal of Aliasing Interactions , 1971 .
[13] J. G. Heywood,et al. A Numerically Based Existence Theorem for the Navier-Stokes Equations , 1999 .
[14] Y. Hiraoka,et al. An efficient estimate based on FFT in topological verification method , 2007 .
[15] D. Wilczak,et al. $C^r$-Lohner algorithm , 2007, 0704.0720.
[16] Konstantin Mischaikow,et al. Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..
[17] Multiple Solutions for a Semilinear Boundary Value Problem: A Computational Multiplicity Proof , 2000 .
[18] Piotr Zgliczynski,et al. -lohner Algorithm , 2022 .
[19] Jean-Philippe Lessard,et al. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .
[20] 中尾 充宏. Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .
[21] Konstantin Mischaikow,et al. Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..
[22] C. Temperton. Fast Mixed-Radix Real Fourier Transforms , 1983 .
[23] Jacek Cyranka. Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof , 2013 .
[24] Hans Koch,et al. Integration of Dissipative Partial Differential Equations: A Case Study , 2010, SIAM J. Appl. Dyn. Syst..
[25] Piotr Zgliczynski,et al. Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..
[26] P. Zgliczynski,et al. Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .
[27] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[28] Piotr Zgliczynski,et al. Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof , 2002, SIAM J. Appl. Dyn. Syst..
[29] Piotr Zgliczynski,et al. C1 Lohner Algorithm , 2002, Found. Comput. Math..
[30] Y. Hiraoka,et al. Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation , 2005 .
[31] C. Temperton. Self-sorting mixed-radix fast Fourier transforms , 1983 .
[32] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..