Integration and Reuse of Heterogeneous Information: Hetero-Homogeneous Data Warehouse Modeling in the Common Warehouse Metamodel

The corporate data warehouse integrates data from various operational data stores of a company. These operational data stores may be heterogeneous with respect to the represented information. The hetero-homogeneous data warehouse modeling approach overcomes issues associated with the integration of heterogeneous information from the operational data stores by featuring a generally homogeneous schema which may be interspersed with heterogeneities in well-defined portions of the data. In order to leverage the capabilities of existing business intelligence (BI) tools for the analysis of hetero-homogeneous information, the schema must comply with the metamodel of the particular BI tool. The Common Warehouse Metamodel (CWM) is a standard for data warehouse metadata which facilitates the reuse of data across multiple BI tools. In this paper, we present guidelines for modeling hetero-homogeneous data warehouses in the CWM. We demonstrate feasibility with a proof-of-concept prototype for the model-driven implementation of hetero-homogeneous data warehouses.

[1]  Christian S. Jensen,et al.  A foundation for capturing and querying complex multidimensional data , 2001, Inf. Syst..

[2]  John Matthew Poole Common Warehouse Metamodel Developer's Guide , 2003 .

[3]  Isabelle Comyn-Wattiau,et al.  A UML-based data warehouse design method , 2006, Decis. Support Syst..

[4]  Gottfried Vossen,et al.  Multidimensional normal forms for data warehouse design , 2003, Inf. Syst..

[5]  TrujilloJuan,et al.  An MDA approach for the development of data warehouses , 2008 .

[6]  Jose-Norberto Mazón,et al.  A survey on summarizability issues in multidimensional modeling , 2009, Data Knowl. Eng..

[7]  Robert Wrembel,et al.  Data Warehouses And Olap: Concepts, Architectures And Solutions , 2006 .

[8]  Wolfgang Lehner,et al.  Normal forms for multidimensional databases , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[9]  Esteban Zimányi,et al.  Hierarchies in a multidimensional model: From conceptual modeling to logical representation , 2006, Data Knowl. Eng..

[10]  Matteo Golfarelli,et al.  Modern Software Engineering Methodologies Meet Data Warehouse Design: 4WD , 2011, DaWaK.

[11]  Ramez Elmasri,et al.  Fundamentals of Database Systems, 5th Edition , 2006 .

[12]  Robert Winter,et al.  Using Reference Models for Data Warehouse Metadata Management , 2005, AMCIS.

[13]  Christoph G. Schütz,et al.  Incremental integration of data warehouses: the hetero-homogeneous approach , 2011, DOLAP '11.

[14]  Torben Bach Pedersen,et al.  Schema Design Alternatives for Multi-granular Data Warehousing , 2010, DEXA.

[15]  Jose-Norberto Mazón,et al.  Model-driven development of OLAP metadata for relational data warehouses , 2012, Comput. Stand. Interfaces.

[16]  José Samos,et al.  YAM2: a multidimensional conceptual model extending UML , 2006, Inf. Syst..

[17]  Peter Gluchowski,et al.  Computer-Aided Warehouse Engineering (CAWE): Leveraging MDA and ADM for the Development of Data Warehouses , 2010, AMCIS.

[18]  Esteban Zimányi,et al.  Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications , 2010 .

[19]  Alberto O. Mendelzon,et al.  Capturing summarizability with integrity constraints in OLAP , 2005, TODS.

[20]  Matteo Golfarelli,et al.  The Dimensional Fact Model: A Conceptual Model for Data Warehouses , 1998, Int. J. Cooperative Inf. Syst..

[21]  Carlos A. Hurtado,et al.  Handling Structural Heterogeneity in OLAP , 2007 .

[22]  Holger Günzel,et al.  Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung , 2005 .

[23]  Arie Shoshani,et al.  Summarizability in OLAP and statistical data bases , 1997, Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150).

[24]  François Pinet,et al.  A Unified Object Constraint Model for Designing and Implementing Multidimensional Systems , 2009, J. Data Semant..

[25]  Jose-Norberto Mazón,et al.  An MDA approach for the development of data warehouses , 2008, Decis. Support Syst..

[26]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[27]  Il-Yeol Song,et al.  A UML profile for multidimensional modeling in data warehouses , 2006, Data Knowl. Eng..

[28]  Bernhard Thalheim,et al.  Hetero-homogeneous hierarchies in data warehouses , 2010, APCCM.