Fundamentals Of Statistical Signal Processing

[1]  T. Chonavel,et al.  Statistical Signal Processing: Modelling and Estimation , 2002 .

[2]  Chong-Yung Chi,et al.  Two-dimensional Fourier series-based model for nonminimum-phase linear shift-invariant systems and texture image classification , 2002, IEEE Trans. Signal Process..

[3]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[4]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[5]  Chong-Yung Chi,et al.  Fourier series based nonminimum phase model for statistical signal processing , 1999, IEEE Trans. Signal Process..

[6]  Chong-Yung Chi,et al.  Nonminimum-phase complex Fourier series based model for statistical signal processing , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[7]  R. L. Freeman,et al.  Bits, symbols, bauds, and bandwidth , 1998, IEEE Commun. Mag..

[8]  Heinrich Meyr,et al.  Digital communication receivers - synchronization, channel estimation, and signal processing , 1997, Wiley series in telecommunications and signal processing.

[9]  Chong-Yung Chi,et al.  Parametric cumulant based phase estimation of 1-D and 2-D nonminimum phase systems by allpass filtering , 1997, IEEE Trans. Signal Process..

[10]  Jean-Louis Lacoume,et al.  Statistics for complex variables and signals - Part I: Variables , 1996, Signal Process..

[11]  Okan K. Ersoy,et al.  Fourier-Related Transforms, Fast Algorithms and Applications , 1996 .

[12]  Sophocles J. Orfanidis,et al.  Introduction to signal processing , 1995 .

[13]  S. Ghahramani,et al.  Fundamentals of Probability , 1995 .

[14]  J. Mendel Lessons in Estimation Theory for Signal Processing, Communications, and Control , 1995 .

[15]  G. Giannakis,et al.  Linear cyclic correlation approaches for blind identification of FIR channels , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[16]  P. A. Delaney,et al.  A bibliography of higher-order spectra and cumulants , 1994 .

[17]  Zhi Ding,et al.  On channel identification based on second-order cyclic spectra , 1994, IEEE Trans. Signal Process..

[18]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[19]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[20]  Lang Tong,et al.  Fast blind equalization via antenna arrays , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[21]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[22]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[23]  Z. Ding,et al.  Channel identification using second order cyclic statistics , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[24]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[25]  Lang Tong,et al.  Blind identification and equalization of multipath channels , 1992, [Conference Record] SUPERCOMM/ICC '92 Discovering a New World of Communications.

[26]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[27]  Lang Tong,et al.  A new approach to blind identification and equalization of multipath channels , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[28]  G. L. Wise,et al.  A cautionary aspect of stationary random processes , 1991 .

[29]  Georgios B. Giannakis,et al.  HOS or SOS for parametric modeling? , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[30]  W. Gardner Exploitation of spectral redundancy in cyclostationary signals , 1991, IEEE Signal Processing Magazine.

[31]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[32]  Raghuveer M. Rao,et al.  Fast algorithms for phase and magnitude reconstruction from bispectra , 1990 .

[33]  D. R. Willinger Some History Of The Study Of Higher-order Moments And Spectra , 1989, Workshop on Higher-Order Spectral Analysis.

[34]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[35]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[36]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[37]  William A. Gardner,et al.  Introduction to random processes with applications to signals and systems: Reviewer: D. W. Clarke Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PK, England , 1988, Autom..

[38]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[39]  Stanley R. Johnson,et al.  Advanced Econometric Methods , 1984 .

[40]  Leland T. Blank,et al.  Statistical Procedures for Engineering, Management, and Science , 1980 .

[41]  Harold W. Sorenson,et al.  Parameter estimation: Principles and problems , 1980 .

[42]  R. Viswanathan,et al.  An introduction to statistical signal processing with applications , 1979 .

[43]  William A. Gardner,et al.  Characterization of cyclostationary random signal processes , 1975, IEEE Trans. Inf. Theory.

[44]  Oscar Kempthorne,et al.  Probability, Statistics, and data analysis , 1973 .

[45]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[46]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[47]  R. Fisher,et al.  148: Moments and Cumulants in the Specification of Distributions. , 1938 .