Galerkin Method for Nonlinear Dynamics

A Galerkin method is presented for control-oriented reduced-order models (ROM). This method generalizes linear approaches elaborated by M. Morzynski et al. for the nonlinear Navier-Stokes equation. These ROM are used as plants for control design in the chapters by G. Tadmor et al., S. Siegel, and R. King in this volume. Focus is placed on empirical ROM which compress flow data in the proper orthogonal decomposition (POD). The chapter shall provide a complete description for construction of straight-forward ROM as well as the physical understanding and teste

[1]  Kelly Cohen,et al.  Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition , 2008, Journal of Fluid Mechanics.

[2]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[3]  Gilead Tadmor,et al.  Mean field representation of the natural and actuated cylinder wake , 2010 .

[4]  Remi Manceau,et al.  Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model , 2001, Journal of Fluid Mechanics.

[5]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[6]  Andrea Serrani,et al.  Control input separation by actuation mode expansion for flow control problems , 2008, Int. J. Control.

[7]  Laurent Cordier,et al.  Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[9]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[10]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[11]  B. R. Noack,et al.  A Finite-Time Thermodynamics of Unsteady Fluid Flows , 2008 .

[12]  Laurent Cordier,et al.  Proper Orthogonal Decomposition: an overview , 2008 .

[13]  R. Stephen Berry,et al.  Finite-Time Thermodynamics , 2022 .

[14]  B. R. Noack,et al.  Wake stabilization using POD Galerkin models with interpolated modes , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[16]  J. N. Sørensen,et al.  Low-Dimensional Modeling of a Driven Cavity Flow with Two Free Parameters , 2003 .

[17]  C. Rowley,et al.  Low-dimensional models of a temporally evolving free shear layer , 2009, Journal of Fluid Mechanics.

[18]  D. Joseph,et al.  Stability of fluid motions. I, II , 1976 .

[19]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[20]  Chester E. Grosch,et al.  The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions , 1981, Journal of Fluid Mechanics.

[21]  Chester E. Grosch,et al.  The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions , 1976, Journal of Fluid Mechanics.

[22]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[23]  D. Henningson,et al.  Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes , 2007, Journal of Fluid Mechanics.

[24]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[25]  J. Wesfreid,et al.  The wake of a cylinder performing rotary oscillations , 2006, Journal of Fluid Mechanics.

[26]  B. R. Noack,et al.  Feedback shear layer control for bluff body drag reduction , 2008, Journal of Fluid Mechanics.

[27]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[28]  Frank Thiele,et al.  Generalized Mean-Field Model for Flow Control Using a Continuous Mode Interpolation , 2006 .

[29]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[30]  Friedrich H. Busse,et al.  Numerical analysis of secondary and tertiary states of fluid flow and their stability properties , 1991 .

[31]  J. Borée,et al.  Automated topology classification method for instantaneous velocity fields , 2007 .

[32]  G. Tadmor,et al.  Dynamic estimation for reduced Galerkin models of fluid flows , 2004, Proceedings of the 2004 American Control Conference.

[33]  K. Kaplan H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology (2nd Edition). XI + 355 S., 152 Abb. Berlin—Heidelberg—New York 1978. Springer-Verlag. DM 66,00 , 1980 .

[34]  B. Podvin A proper-orthogonal-decomposition–based model for the wall layer of a turbulent channel flow , 2009 .

[35]  B. R. Noack,et al.  Optimal Boundary Control Problems Related to High-Lift Configurations , 2010 .

[36]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[37]  Robert King,et al.  Model-based Control of Vortex Shedding Using Low-dimensional Galerkin Models , 2003 .

[38]  P. Batcho Global spectral methods for the solution of the incompressible Navier-Stokes equations in complex geometries : the generalized Stokes eigen-system , 1994 .

[39]  Kai Schneider,et al.  Reduced-Order Modelling of Turbulent Jets for Noise Control , 2009 .

[40]  Gilead Tadmor,et al.  System reduction strategy for Galerkin models of fluid flows , 2009 .

[41]  B. R. Noack,et al.  A low‐dimensional Galerkin method for the three‐dimensional flow around a circular cylinder , 1994 .

[42]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[43]  Angelo Iollo,et al.  Robust model identification of actuated vortex wakes , 2009 .

[44]  Mark N. Glauser,et al.  Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure , 1994 .

[45]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[46]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[47]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[48]  Laurent Cordier,et al.  Calibration of POD reduced‐order models using Tikhonov regularization , 2009 .

[49]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[50]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[51]  Frank Thiele,et al.  Continuous Mode Interpolation for Control-Oriented Models of Fluid Flow , 2007 .

[52]  Gilead Tadmor,et al.  A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration , 2009 .

[53]  Frank Thiele,et al.  Turbulence Control Based on Reduced-Order Models and Nonlinear Control Design , 2010 .

[54]  B. R. Noack,et al.  Actuation models and dissipative control in empirical Galerkin models of fluid flows , 2004, Proceedings of the 2004 American Control Conference.

[55]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[56]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[57]  Jeff Moehlis,et al.  Models for Turbulent Plane Couette Flow Using the Proper Orthogonal Decomposition: Minimal Flow Unit , 2001 .

[58]  R. Kraichnan,et al.  Is there a statistical mechanics of turbulence , 1988 .

[59]  C. Fletcher Computational Galerkin Methods , 1983 .

[60]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .