Discrete-Time Sliding Mode Filter with Parameter adaptation

This paper presents a new sliding mode filter (SMF-N). The SMF-N is an improvement of Levant et al.’s proposed sliding mode filter (SMF-L). SMF-N improves two drawbacks of SMF-L by using parameter adaptation. One is that SMF-N guarantees System tracking performance. Another one is that SMF-N balances the trade-off between convergence speed and noise attenuating efficiency. In addition, SMF-N produces less overshoot than SMF-L. Simulations are conducted for validating the advantage of the SMF-N.

[1]  L. Fridman,et al.  Higher‐order sliding‐mode observer for state estimation and input reconstruction in nonlinear systems , 2008 .

[2]  Takanori Emaru,et al.  Research on estimating smoothed value and differential value by using sliding mode system , 2003, IEEE Trans. Robotics Autom..

[3]  L. Fridman,et al.  High-Order Sliding-Mode Observer for Linear Systems with Unknown Inputs , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[4]  Sung-Jea Ko,et al.  Efficient implementation of one-dimensional recursive median filters , 1990 .

[5]  Peter C. Müller,et al.  A simple improved velocity estimation for low-speed regions based on position measurements only , 2006, IEEE Transactions on Control Systems Technology.

[6]  Leonid M. Fridman,et al.  Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches , 2016, IEEE Transactions on Industrial Electronics.

[7]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[8]  Myo Thant Sin Aung,et al.  A new noise-reduction filter with sliding mode and low-pass filtering , 2014, 2014 IEEE Conference on Control Applications (CCA).

[9]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[10]  Xiaogang Xiong,et al.  Discrete-Time Sliding Mode Filter with Adaptive Gain , 2016 .

[11]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[12]  Motoji Yamamoto,et al.  Real-Time Quadratic Sliding Mode Filter for Removing Noise , 2012, Adv. Robotics.

[13]  Motoji Yamamoto,et al.  Parameter selection guidelines for a parabolic sliding mode filter based on frequency and time domain characteristics , 2012 .

[14]  Marcia Kilchenman O'Malley,et al.  On the performance of passivity-based control of haptic displays employing levant's differentiator for velocity estimation , 2012, 2012 IEEE Haptics Symposium (HAPTICS).

[15]  Motoji Yamamoto,et al.  Improving velocity feedback for position control by using a discrete-time sliding mode filtering with adaptive windowing , 2014, Adv. Robotics.

[16]  Xinghuo Yu,et al.  Sliding-Mode-Based Differentiation and Filtering , 2018, IEEE Transactions on Automatic Control.

[17]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[18]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[19]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[20]  Xiaogang Xiong,et al.  Adaptive gains to super‐twisting technique for sliding mode design , 2018, Asian Journal of Control.