MgF2 as an effective additive for improving ionic conductivity of ceramic solid electrolytes

[1]  Zhiwei Luo,et al.  Effect of sintering temperature and holding time on the crystal phase, microstructure, and ionic conductivity of NASICON-type 33Na2O-40ZrO2-40SiO2-10P2O5 solid electrolytes , 2021, Applied Physics A.

[2]  Yejing Dai,et al.  Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries , 2021 .

[3]  S. Shi,et al.  Identifying Migration Channels and Bottlenecks in Monoclinic NASICON‐Type Solid Electrolytes with Hierarchical Ion‐Transport Algorithms , 2021, Advanced Functional Materials.

[4]  L. Qu,et al.  Grain Boundary Design of Solid Electrolyte Actualizing Stable All-Solid-State Sodium Batteries. , 2021, Small.

[5]  K. Bharathi,et al.  Review on the synthesis and doping strategies in enhancing the Na ion conductivity of Na3Zr2Si2PO12 (NASICON) based solid electrolytes , 2021 .

[6]  Zhen Zhou,et al.  NASICON‐Type Na 3 Zr 2 Si 2 PO 12 Solid‐State Electrolytes for Sodium Batteries** , 2021 .

[7]  Haiyan Zhang,et al.  Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte , 2021 .

[8]  Felix H. Richter,et al.  On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries , 2021 .

[9]  Lee Loong Wong,et al.  Bond Valence Pathway Analyzer—An Automatic Rapid Screening Tool for Fast Ion Conductors within softBV , 2021 .

[10]  Chunsheng Wang,et al.  Ultrastable All-Solid-State Sodium Rechargeable Batteries , 2020 .

[11]  Youlong Xu,et al.  Enhanced ionic conductivity of an F−-assisted Na3Zr2Si2PO12 solid electrolyte for solid-state sodium batteries , 2020 .

[12]  Sebastian Wenzel,et al.  Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries , 2020 .

[13]  A. Cheetham,et al.  Phase Behavior in Nasicon Electrolytes and Electrodes , 2020, ECS Meeting Abstracts.

[14]  Chengwei Wang,et al.  Reversible Short‐Circuit Behaviors in Garnet‐Based Solid‐State Batteries , 2020, Advanced Energy Materials.

[15]  Youlong Xu,et al.  Mg 2+ /F − Synergy to Enhance the Ionic Conductivity of Na 3 Zr 2 Si 2 PO 12 Solid Electrolyte for Solid‐State Sodium Batteries , 2020 .

[16]  W. Luo,et al.  Reducing Interfacial Resistance by Na-SiO2 Composite Anode for NASICON-Based Solid-State Sodium Battery , 2020 .

[17]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[18]  Chenglong Zhao,et al.  A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity , 2019 .

[19]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[20]  Li Lu,et al.  A composite NASICON (Na3Zr2Si2PO12) Solid-state Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering. , 2019, ACS applied materials & interfaces.

[21]  Yong‐Sheng Hu,et al.  Correlated Migration Invokes Higher Na+‐Ion Conductivity in NaSICON‐Type Solid Electrolytes , 2019, Advanced Energy Materials.

[22]  Chengwei Wang,et al.  A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics , 2019, Energy Storage Materials.

[23]  Hui Wang,et al.  Synthesis and Properties of NASICON-type LATP and LAGP Solid Electrolytes. , 2019, ChemSusChem.

[24]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[25]  Qian Sun,et al.  Insight into the Microstructure and Ionic Conductivity of Cold Sintered NASICON Solid Electrolyte for Solid-State Batteries. , 2019, ACS applied materials & interfaces.

[26]  Zhong Lin Wang,et al.  A High‐Performance Monolithic Solid‐State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte , 2019, Advanced Energy Materials.

[27]  Q. Ma,et al.  Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells , 2019, Journal of Materials Chemistry A.

[28]  V. Thangadurai,et al.  Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12 , 2019, Solid State Ionics.

[29]  Stefan Adams,et al.  SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors. , 2019, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[30]  Dan Chen,et al.  Dielectric and microwave absorption properties of divalent-doped Na3Zr2Si2PO12 ceramics , 2018, Journal of the European Ceramic Society.

[31]  Sen Xin,et al.  Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte , 2018 .

[32]  Yong‐Sheng Hu,et al.  NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries , 2018, Rare Metals.

[33]  Yue Deng,et al.  Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes , 2018 .

[34]  Marc Reisch,et al.  Solid-state batteries inch their way to market , 2017 .

[35]  Yong‐Sheng Hu,et al.  A Self‐Forming Composite Electrolyte for Solid‐State Sodium Battery with Ultralong Cycle Life , 2017 .

[36]  Michael J. Hoffmann,et al.  Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor. , 2016, Inorganic chemistry.

[37]  E. Wachsman,et al.  Structural Investigation of Monoclinic‐Rhombohedral Phase Transition in Na3Zr2Si2PO12 and Doped NASICON , 2015 .

[38]  N. Dudney,et al.  Handbook of Solid State Batteries , 2015 .

[39]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[40]  R. Jiménez,et al.  High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5) , 2015 .

[41]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[42]  Ying Jin,et al.  Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery , 2013 .

[43]  M. Catti,et al.  Lithium location in NASICON-type Li+ conductors by neutron diffraction: II. Rhombohedral α-LiZr2(PO4)3 at T=423 K , 2000 .

[44]  J. Boilot,et al.  Crystal structure of the true nasicon: Na3Zr2Si2PO12 , 1987 .

[45]  P. Colomban Orientational disorder, glass/crystal transition and superionic conductivity in nasicon , 1986 .

[46]  U. Alpen,et al.  Phase transition in nasicon (Na3Zr2Si2PO12) , 1979 .

[47]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[48]  A Duncanson,et al.  Some Properties of Magnesium Fluoride crystallized from the Melt , 1958 .

[49]  Hai-Feng Li,et al.  Synthesis of CMR manganites and ordering phenomena in complex transition metal oxides , 2008 .

[50]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[51]  Xinxin Wang,et al.  Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity , 2022 .