Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data

Applications of statistical models to describe spatial dependence in geo-referenced data are widespread across many disciplines including the environmental sciences. Most of these applications assume that the data follow a Gaussian distribution. However, in many of them the normality assumption, and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where the data are uni-modal and positively skewed, the Birnbaum–Saunders (BS) distribution has excelled. This paper proposes a spatial log-linear model based on the BS distribution. Model parameters are estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sensitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus concentration in the soil is considered—which is extremely important for agricultural management.

[1]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[2]  M. Uribe-Opazo,et al.  Analysis of local influence in geostatistics using Student's t-distribution , 2014 .

[3]  Panlop Zeephongsekul,et al.  Spatial and temporal modelling of tourist movements using Semi-Markov processes , 2011 .

[4]  C. Chatfield Continuous Univariate Distributions, Vol. 1 , 1995 .

[5]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[6]  Peter W. M. John,et al.  An Application of a Balanced Incomplete Block Design , 1961 .

[7]  Heleno Bolfarine,et al.  Influence diagnostics in generalized log-gamma regression models , 2003, Comput. Stat. Data Anal..

[8]  M. Ivette Gomes,et al.  Extreme value Birnbaum–Saunders regression models applied to environmental data , 2016, Stochastic Environmental Research and Risk Assessment.

[9]  Shuangzhe Liu,et al.  Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions , 2015, Statistical Methods & Applications.

[10]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[11]  Gilberto A. Paula,et al.  Influence Diagnostics in log-Birnbaum-Saunders Regression Models , 2004 .

[12]  Gilberto A. Paula,et al.  Generalized Birnbaum‐Saunders distributions applied to air pollutant concentration , 2008 .

[13]  A. Konopka,et al.  FIELD-SCALE VARIABILITY OF SOIL PROPERTIES IN CENTRAL IOWA SOILS , 1994 .

[14]  Sik-Yum Lee,et al.  Local influence for incomplete data models , 2001 .

[15]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[16]  Fabrizio Ruggeri,et al.  A criterion for environmental assessment using Birnbaum–Saunders attribute control charts , 2015 .

[17]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[18]  Víctor Leiva,et al.  Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics , 2015 .

[19]  Fernando Marmolejo-Ramos,et al.  Modeling neural activity with cumulative damage distributions , 2015, Biological Cybernetics.

[20]  David A. Kendrick,et al.  Stochastic control for economic models , 1981 .

[21]  George Christakos,et al.  An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile , 2010 .

[22]  Flávio Augusto Ziegelmann,et al.  A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data , 2013, Stochastic Environmental Research and Risk Assessment.

[23]  D. J. Davis,et al.  AN ANALYSIS OF SOME FAILURE DATA , 1952 .

[24]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[25]  Milan Stehlík,et al.  Issues in the optimal design of computer simulation experiments , 2009 .

[26]  Miguel Angel Uribe-Opazo,et al.  Influence diagnostics in Gaussian spatial linear models , 2012 .

[27]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[28]  Manuel Galea,et al.  Influence measures on corrected score estimators in functional heteroscedastic measurement error models , 2013, J. Multivar. Anal..

[29]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[30]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[31]  José M. Angulo,et al.  A length-biased version of the Birnbaum-Saunders distribution with application in water quality , 2009 .

[32]  Víctor Leiva,et al.  Air contaminant statistical distributions with application to PM10 in Santiago, Chile. , 2013, Reviews of environmental contamination and toxicology.

[33]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[34]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[35]  Cristian Villegas,et al.  Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis , 2011, IEEE Transactions on Reliability.

[36]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[37]  Local in∞uence of explanatory variables in Gaussian spatial linear models , 2011 .

[38]  Rafał Podlaski,et al.  Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution , 2008 .

[39]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[40]  Milan Stehlík,et al.  Compound optimal spatial designs , 2009 .

[41]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[42]  María Dolores Ugarte,et al.  Outliers detection in multivariate spatial linear models , 2006 .

[43]  Manuel Galea,et al.  Diagnostics in Birnbaum-Saunders accelerated life models with an application to fatigue data , 2014 .

[44]  J. Ibrahim,et al.  Perturbation selection and influence measures in local influence analysis , 2007, 0803.2986.

[45]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[46]  Víctor Leiva,et al.  A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution , 2016 .

[47]  Víctor Leiva,et al.  On an extreme value version of the Birnbaum-Saunders distribution , 2012 .

[48]  M. Uribe-Opazo,et al.  Influence diagnostics in elliptical spatial linear models , 2015 .

[49]  Francisco José de A. Cysneiros,et al.  A Multivariate Log-Linear Model for Birnbaum-Saunders Distributions , 2016, IEEE Transactions on Reliability.

[50]  E. Moya-Elizondo Fusarium crown rot disease: biology, interactions, management and function as a possible sensor of global climate change , 2013 .

[51]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data: Waller/Applied Spatial Statistics , 2004 .

[52]  Manuel Galea,et al.  Local influence when fitting Gaussian spatial linear models: an agriculture application , 2013 .