QoS-Guaranteed Path Selection Algorithm for Service Composition

In this paper, QoS-guaranteed path selection algorithm for service composition is described. A heuristic algorithm, K-closest pruning (KCP), is used to solve the problem of multi-constraint service path selection for SON in polynomial time. The main feature of this algorithm is that the path selected by this algorithm meets all the QoS requirements specified by the user/application. The main idea in this approach is to leverage network proximity information to reduce search space, i.e. to reduce the number of qualified overlay nodes/links, for service path selection for a given request. This paper demonstrates the two distinct objectives reuse and load balancing and their use in modifying the path selection of KCP algorithm to achieve the objectives with affecting performance of KCP algorithm

[1]  Sujata Banerjee,et al.  S3: a scalable sensing service for monitoring large networked systems , 2006, INM '06.

[2]  Klara Nahrstedt,et al.  QoS-assured service composition in managed service overlay networks , 2003, 23rd International Conference on Distributed Computing Systems, 2003. Proceedings..

[3]  Jeffrey M. Jaffe,et al.  Algorithms for finding paths with multiple constraints , 1984, Networks.

[4]  Klara Nahrstedt,et al.  SpiderNet: an integrated peer-to-peer service composition framework , 2004, Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004..

[5]  Jon Crowcroft,et al.  Quality-of-Service Routing for Supporting Multimedia Applications , 1996, IEEE J. Sel. Areas Commun..

[6]  Prasant Mohapatra,et al.  QRON: QoS-aware routing in overlay networks , 2004, IEEE Journal on Selected Areas in Communications.

[7]  Angelos D. Keromytis,et al.  SOS: secure overlay services , 2002, SIGCOMM '02.

[8]  Michael Harville,et al.  An architecture for componentized, network-based media services , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[9]  Klara Nahrstedt,et al.  Service composition for advanced multimedia applications , 2005, IS&T/SPIE Electronic Imaging.

[10]  Klara Nahrstedt,et al.  On Exploring Performance Optimizations in Web Service Composition , 2004, Middleware.

[11]  Randy H. Katz,et al.  Load balancing and stability issues in algorithms for service composition , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[12]  Sujata Banerjee,et al.  Estimating network proximity and latency , 2006, CCRV.

[13]  Randy H. Katz,et al.  Over QoS: Offering QoS using overlays , 2002 .

[14]  Manish Jain,et al.  End-to-end estimation of the available bandwidth variation range , 2005, SIGMETRICS '05.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Srinivasan Seshan,et al.  Enabling conferencing applications on the internet using an overlay muilticast architecture , 2001, SIGCOMM 2001.

[17]  Jonathan S. Turner,et al.  Placing Servers in Overlay Networks , 2002 .

[18]  Amin Vahdat,et al.  MediSyn: a synthetic streaming media service workload generator , 2003, NOSSDAV '03.

[19]  Edith Cohen,et al.  Replication strategies in unstructured peer-to-peer networks , 2002, SIGCOMM.

[20]  Sujata Banerjee,et al.  Service adaptive multicast for media distribution networks , 2003, Proceedings the Third IEEE Workshop on Internet Applications. WIAPP 2003.

[21]  Tilman Wolf,et al.  Configuring sessions in programmable networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[22]  Piet Van Mieghem,et al.  Concepts of exact QoS routing algorithms , 2004, IEEE/ACM Transactions on Networking.