Gender-Specific Left–Right Asymmetries in Human Visual Cortex

The structural correlates of gender differences in visuospatial processing are essentially unknown. Our quantitative analysis of the cytoarchitecture of the human primary visual cortex [V1/Brodmann area 17 (BA17)], neighboring area V2 (BA18), and the cytoarchitectonic correlate of the motion-sensitive complex (V5/MT+/hOc5) shows that the visual areas are sexually dimorphic and that the type of dimorphism differs among the areas. Gender differences exist in the interhemispheric asymmetry of hOc5 volumes and in the right-hemispheric volumetric ratio of hOc5 to BA17, an area that projects to V5/MT+/hOc5. Asymmetry was also observed in the surface area of hOc5 but not in its cortical thickness. The differences give males potentially more space in which to process additional information, a finding consistent with superior male processing in particular visuospatial tasks, such as mental rotation. Gender differences in hOc5 exist with similar volume fractions of cell bodies, implying that, overall, the visual neural circuitry is similar in males and females.

[1]  D. Woodward,et al.  Possible sex differences in the developing human fetal brain. , 1991, Journal of clinical and experimental neuropsychology.

[2]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[3]  R. Holloway,,et al.  Sexual dimorphism in the human corpus callosum. , 1982, Science.

[4]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[5]  Michael T. Goodrich,et al.  Contour interpolation by straight skeletons , 2004, Graph. Model..

[6]  J. Andreassi,et al.  Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. , 1982, The International journal of neuroscience.

[7]  P. Pietrini,et al.  Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. , 1996, Archives of general psychiatry.

[8]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[9]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[10]  Silvia Biasotti Reeb graph representation of surfaces with boundary , 2004, Proceedings Shape Modeling Applications, 2004..

[11]  A. Wunderlich,et al.  Brain activation during human navigation: gender-different neural networks as substrate of performance , 2000, Nature Neuroscience.

[12]  D. Wahlsten,et al.  Sex Differences in the Human Corpus Callosum: Myth or Reality? , 1997, Neuroscience & Biobehavioral Reviews.

[13]  A W Toga,et al.  Localization of the human cortical visual area MT based on computer aided histological analysis. , 2005, Cerebral Cortex.

[14]  G. Palm,et al.  Calculation of surface areas from serial sections , 1983, Journal of Neuroscience Methods.

[15]  Guy A. Orban,et al.  Visual Processing in Macaque Area MT/V5 and Its Satellites (MSTd and MSTv) , 1997 .

[16]  J. Risberg,et al.  Cortical Activation during Visual Spatial Processing: Relation between Hemispheric Asymmetry of Blood Flow and Performance , 1994, Brain and Cognition.

[17]  A. Schleicher,et al.  Asymmetry in the Human Motor Cortex and Handedness , 1996, NeuroImage.

[18]  P. Prioreschi A history of medicine: primitive and ancient medicine. , 1991, Mellen history of medicine.

[19]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[20]  Kenneth R. Sloan,et al.  Surfaces from contours: the correspondence and branching problems , 1991 .

[21]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[22]  K. Skullerud Variations in the size of the human brain. Influence of age, sex, body length, body mass index, alcoholism, Alzheimer changes, and cerebral atherosclerosis. , 1985, Acta neurologica Scandinavica. Supplementum.

[23]  Jean-Daniel Boissonnat,et al.  Shape reconstruction from planar cross sections , 1988, Comput. Vis. Graph. Image Process..

[24]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[25]  S. Feldon,et al.  Age-related deterioration of motion perception and detection , 1998, Graefe's Archive for Clinical and Experimental Ophthalmology.

[26]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[27]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[28]  Jared Rutter,et al.  Regulation of Clock and NPAS2 DNA Binding by the Redox State of NAD Cofactors , 2001, Science.

[29]  A. Schleicher,et al.  Structural Asymmetries in the Human Forebrain and the Forebrain of Non-human Primates and Rats , 1996, Neuroscience & Biobehavioral Reviews.

[30]  Stephanie Clarke,et al.  Callosal Connections and Functional Subdivision of the Human Occipital Cortex , 1993 .

[31]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Lars Muckli,et al.  Primary Visual Cortex Activity along the Apparent-Motion Trace Reflects Illusory Perception , 2005, PLoS biology.

[33]  Adam M Sillito,et al.  Corticothalamic interactions in the transfer of visual information. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  Karl J. Friston,et al.  Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains , 2001, NeuroImage.

[35]  M. Hofman,et al.  Morphometry of size/volume variables and comparison of their bivariate relations in the nervous system under different conditions , 1986, Journal of Neuroscience Methods.

[36]  Q. Rahman,et al.  A specific sexual orientation-related difference in navigation strategy. , 2005, Behavioral neuroscience.

[37]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[38]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.

[39]  R. Emmerson,et al.  Pattern reversal evoked potentials: age, sex and hemispheric asymmetry. , 1985, Electroencephalography and clinical neurophysiology.

[40]  C Davatzikos,et al.  Sex differences in anatomic measures of interhemispheric connectivity: correlations with cognition in women but not men. , 1998, Cerebral cortex.

[41]  S Shipp,et al.  Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: A dual model of retinal and cortical topographies , 2001, The Journal of comparative neurology.

[42]  Katrin Amunts,et al.  Observer‐independent analysis of high‐resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas , 2007, Human brain mapping.

[43]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[45]  A. Milner,et al.  The role of V5/MT+ in the control of catching movements: an rTMS study , 2005, Neuropsychologia.

[46]  E. J. Field,et al.  Das zentralnervensystem in Zahlen und Tabellen , 1970 .

[47]  M. Peters,et al.  Spatial Ability, Student Gender, and Academic Performance , 1995 .

[48]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[49]  K. Yoshida,et al.  The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey , 1981, Neuroscience Letters.

[50]  Juha Silvanto,et al.  Double dissociation of V1 and V5/MT activity in visual awareness. , 2005, Cerebral cortex.

[51]  Frithjof Kruggel,et al.  Gender and age effects in structural brain asymmetry as measured by MRI texture analysis , 2003, NeuroImage.

[52]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[53]  J. Juraska,et al.  Sex differences in neuron number in the binocular area of the rat visual cortex , 1992, The Journal of comparative neurology.

[54]  Peter A. Tass,et al.  Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps , 2006, NeuroImage.

[55]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[56]  A. Shepherd,et al.  Pattern‐reversal visual evoked potentials in infants: gender differences during early visual maturation , 2002, Developmental medicine and child neurology.

[57]  B. Geiger Three-dimensional modeling of human organs and its application to diagnosis and surgical planning , 1993 .

[58]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[59]  A. Schleicher,et al.  Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas , 2007, Human brain mapping.

[60]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[61]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[62]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[63]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[65]  A. Toga,et al.  Parasagittal asymmetries of the corpus callosum. , 2006, Cerebral cortex.

[66]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[67]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[69]  David Meyers Reconstruction of surfaces from planar contours , 1995 .

[70]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[71]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[72]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[73]  M. Bryden,et al.  Handedness and eye-dominance: a meta-analysis of their relationship. , 1996, Laterality.

[74]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[75]  C Gössl,et al.  Frequency dependence and gender effects in visual cortical regions involved in temporal frequency dependent pattern processing , 2001, Human brain mapping.

[76]  Blake W. Johnson,et al.  Cerebral asymmetry for mental rotation: effects of response hand, handedness and gender , 2002, Neuroreport.

[77]  K. Amunts,et al.  Human V5/MT+: comparison of functional and cytoarchitectonic data , 2005, Anatomy and Embryology.

[78]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[79]  J. Juraska,et al.  Sex differences in cortical thickness and the dendritic tree in the monocular and binocular subfields of the rat visual cortex at weaning age. , 1992, Brain research. Developmental brain research.

[80]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[81]  G. D. Rosen,et al.  Histological Asymmetry in the Primary Visual Cortex of the Rat: Implications for Mechanisms of Cerebral Asymmetry , 1986, Cortex.

[82]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[83]  C. Porac,et al.  Eye-dominance, writing hand, and throwing hand. , 1999, Laterality.

[84]  Ajmvu ll'CU Anatomische, Physiologische, und Physikalische Daten und Tabellen zum Gebrauche für Mediciner , 1888, Edinburgh Medical Journal.

[85]  M. Eals Asymmetric processing in perception of apparent movement , 1987, Neuropsychologia.