Continuous improvement through knowledge-guided analysis in experience feedback

Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector.

[1]  Cedrick Béler,et al.  Modélisation générique d'un retour d'expérience cognitif : application à la prévention des risques , 2008 .

[2]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[3]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[4]  F. Paul Wilson,et al.  Root Cause Analysis : A Tool for Total Quality Management , 1993 .

[5]  R. Hutton,et al.  Applied cognitive task analysis (ACTA): a practitioner's toolkit for understanding cognitive task demands. , 1998, Ergonomics.

[6]  Mercedes Argüello Casteleiro,et al.  Clinical practice guidelines: A case study of combining OWL-S, OWL, and SWRL , 2008, Knowl. Based Syst..

[7]  Erik Hollnagel,et al.  Barriers And Accident Prevention , 2004 .

[8]  Bernard Grabot,et al.  A Competence Approach in the Experience Feedback Process , 2003, APMS.

[9]  T. Denœux Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence , 2008 .

[10]  Taiichi Ohno,et al.  Toyota Production System : Beyond Large-Scale Production , 1988 .

[11]  Jadwiga Indulska,et al.  A survey of context modelling and reasoning techniques , 2010, Pervasive Mob. Comput..

[12]  Edward Szczerbicki,et al.  Application of a Multi-domain Knowledge Structure: The Decisional DNA , 2009, Intelligent Systems for Knowledge Management.

[13]  Letha H. Etzkorn,et al.  Automated conversion between different knowledge representation formats , 2006, Knowl. Based Syst..

[14]  Guy Doumeingts,et al.  Architectures for enterprise integration and interoperability: Past, present and future , 2008, Comput. Ind..

[15]  Steffen Staab,et al.  International Handbooks on Information Systems , 2013 .

[16]  Kaoru Ishikawa Introduction to Quality Control , 1990 .

[17]  Glenn Shafer,et al.  Perspectives on the theory and practice of belief functions , 1990, Int. J. Approx. Reason..

[18]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[19]  Eric Tsui,et al.  An ontology-based similarity measurement for problem-based case reasoning , 2009, Expert Syst. Appl..

[20]  Olivier Corby,et al.  Building and using a medical ontology for knowledge management and cooperative work in a health care network , 2006, Comput. Biol. Medicine.

[21]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[22]  Catherine Faron-Zucker,et al.  Searching the semantic Web: approximate query processing based on ontologies , 2006, IEEE Intelligent Systems.

[23]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[24]  Edward Szczerbicki,et al.  EXPERIENCE-BASED KNOWLEDGE REPRESENTATION: SOEKS , 2009, Cybern. Syst..

[25]  Ronald Fagin,et al.  A logic for reasoning about probabilities , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[26]  Rosina O. Weber,et al.  Intelligent lessons learned systems , 2001, Expert Syst. Appl..

[27]  Tim Menzies,et al.  Knowledge maintenance: the state of the art , 1999, The Knowledge Engineering Review.

[28]  J. K. Liu,et al.  OWL/SWRL representation methodology for EXPRESS-driven product information model: Part I. Implementation methodology , 2008, Comput. Ind..

[29]  Georg Lausen,et al.  Ontologies in F-logic , 2004, Handbook on Ontologies.

[30]  Marie-Laure Mugnier,et al.  Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs , 2008, Advanced Information and Knowledge Processing.

[31]  Minh Ha-Duong Hierarchical fusion of expert opinions in the Transferable Belief Model, application to climate sensitivity , 2008, Int. J. Approx. Reason..

[32]  Sven Ove Hansson,et al.  Learning from accidents : what more do we need to know? , 2010 .

[33]  Américo Lopes Azevedo,et al.  Interoperability in Collaborative Networks: Independent and industry-specific initiatives - The case of the footwear industry , 2008, Comput. Ind..

[34]  Alexander Borgida,et al.  On the Relative Expressiveness of Description Logics and Predicate Logics , 1996, Artif. Intell..

[35]  Michel Chein,et al.  A content-search information retrieval process based on conceptual graphs , 2005, Knowledge and Information Systems.

[36]  David W. Aha,et al.  Intelligent delivery of military lessons learned , 2003, Decis. Support Syst..

[37]  Roy H. Campbell,et al.  Reasoning about Uncertain Contexts in Pervasive Computing Environments , 2004, IEEE Pervasive Comput..

[38]  Karan Bhatia,et al.  SOAs for scientific applications: Experiences and challenges , 2009, Future Gener. Comput. Syst..

[39]  Olivier Corby,et al.  Conceptual Graphs for Semantic Web Applications , 2005, ICCS.

[40]  Bernard Kamsu-Foguem,et al.  Requirements modelling and formal analysis using graph operations , 2006 .

[41]  Anders Jacobsson,et al.  Underlying causes and level of learning from accidents reported to the MARS database , 2010 .

[42]  Bernard Kamsu-Foguem,et al.  Knowledge formalization in experience feedback processes: An ontology-based approach , 2008, Comput. Ind..

[43]  Philippe Smets,et al.  Decision making in the TBM: the necessity of the pignistic transformation , 2005, Int. J. Approx. Reason..

[44]  Scott Henninger,et al.  Tool Support for Experience-based Software Development Methodologies , 2003, Adv. Comput..

[45]  Siegfried Handschuh,et al.  Semantic annotation for knowledge management: Requirements and a survey of the state of the art , 2006, J. Web Semant..

[46]  Stuart C. Shapiro Review of Knowledge representation: logical, philosophical, and computational foundations by John F. Sowa. Brooks/Cole 2000. , 2001 .

[47]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Automatic knowledge learning and case adaptation with a hybrid committee approach , 2006, J. Appl. Log..

[48]  Michael J. Hicks Problem Solving and Decision Making , 2004 .

[49]  Nicola Guarino,et al.  Formal ontology, conceptual analysis and knowledge representation , 1995, Int. J. Hum. Comput. Stud..

[50]  Marie-Laure Mugnier,et al.  On generalization/specialization for conceptual graphs , 1995, J. Exp. Theor. Artif. Intell..

[51]  Patrick Brézillon,et al.  Context in problem solving: a survey , 1999, The Knowledge Engineering Review.

[52]  Geoff Tennant,et al.  Six Sigma : SPC and TQM in Manufacturing and Services , 2001 .

[53]  Rose Dieng,et al.  An Ontology-based Approach to Support Text Mining and Information Retrieval in the Biological Domain , 2007, J. Univers. Comput. Sci..

[54]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[55]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[56]  Christèle Lecomte,et al.  Hierarchical and conditional combination of belief functions induced by visual tracking , 2010, Int. J. Approx. Reason..

[57]  Josefinne Lund,et al.  Accident prevention. Presentation of a model placing emphasis on human, structural and cultural factors , 2004 .

[58]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[59]  Emmanuel Manatakis,et al.  Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models , 2009 .

[60]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[61]  Holitiana Rakoto,et al.  Intégration du retour d'expérience dans les processus industriels : application à Alstom Transport , 2004 .

[62]  Rafael Gouriveau,et al.  Risk management - dependability tools and case-based reasoning integration using the object formalism , 2004, Comput. Ind..

[63]  Dieter Fensel,et al.  A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective , 2001, IEEE Trans. Knowl. Data Eng..

[64]  J. K. Liu,et al.  OWL/SWRL representation methodology for EXPRESS-driven product information model: Part II: Practice , 2008, Comput. Ind..

[65]  J. Robert Taylor Understanding and combating design error in process plant design , 2007 .

[66]  Ian Horrocks,et al.  Description Logics , 2008, Handbook of Knowledge Representation.

[67]  Víctor Anaya,et al.  The Unified Enterprise Modelling Language - Overview and further work , 2010, Comput. Ind..

[68]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[69]  Jean-François Baget,et al.  Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints , 2011, J. Artif. Intell. Res..

[70]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.