Modeling word perception using the Elman network

This paper presents an automatic acquisition process to acquire the semantic meaning for the words. This process obtains the representation vectors for stemmed words by iteratively improving the vectors, using a trained Elman network. Experiments performed on a corpus composed of Shakespeare's writings show its linguistic analysis and categorization abilities.

[1]  Cheng-Yuan Liou,et al.  Ambiguous binary representation in multilayer neural networks , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[2]  William B. Frakes,et al.  Stemming Algorithms , 1992, Information Retrieval: Data Structures & Algorithms.

[3]  Cheng-Yuan Liou,et al.  Error tolerant associative memory , 1999, Biological Cybernetics.

[4]  C. B. Williams Mendenhall's studies of word-length distribution in the works of Shakespeare and Bacon , 1975 .

[5]  N. Schaumberger Generalization , 1989, Whitehead and Philosophy of Education.

[6]  S.-L. Lin,et al.  The other variant Boltzmann machine , 1989, International 1989 Joint Conference on Neural Networks.

[7]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[8]  J. Elman Generalization , simple recurrent networks , and the emergence of structure , 1998 .

[9]  M. Gernsbacher,et al.  Proceedings of the 20th Annual Conference of the Cognitive Science Society , 1998 .

[10]  Huey-Wen Yien,et al.  Information categorization approach to literary authorship disputes , 2003 .

[11]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[12]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[13]  John Burrows,et al.  Questions of Authorship: Attribution and Beyond A Lecture Delivered on the Occasion of the Roberto Busa Award ACH-ALLC 2001, New York , 2003, Comput. Humanit..

[14]  Cheng-Yuan Liou,et al.  Geometrical Perspective on Learning Behavior , 2005, J. Inf. Sci. Eng..

[15]  Ricardo Baeza-Yates,et al.  Information Retrieval: Data Structures and Algorithms , 1992 .

[16]  Cheng-Yuan Liou Backbone Structure of Hairy Memory , 2006, ICANN.

[17]  Harold Bloom,et al.  Shakespeare: The Invention of the Human , 1998 .

[18]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[19]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[20]  R. Harald Baayen,et al.  How Variable May a Constant be? Measures of Lexical Richness in Perspective , 1998, Comput. Humanit..

[21]  Cheng-Yuan Liou,et al.  Finite Memory Loading in Hairy Neurons , 2004, Natural Computing.

[22]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[23]  Halim Fathoni,et al.  DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION ENGINEERING , 2008 .

[24]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[25]  Cheng-Yuan Liou,et al.  Resolving Hidden Representations , 2007, ICONIP.

[26]  D. Holmes The Evolution of Stylometry in Humanities Scholarship , 1998 .

[27]  Yasushi Kiyoki,et al.  An Associative Search Method Based on Symbolic Filtering and Semantic Ordering for Database Systems , 1997, DS-7.