Co-Design of Strain-Actuated Solar Arrays for Precision Pointing and Jitter Reduction

Many important spacecraft operations require precision pointing such as space astronomy and high-rate communications. Traditionally, reaction wheels have been used for this purpose but they have been considered unreliable for many missions. This work presents the use strain-actuated solar arrays (SASA) for precision pointing and jitter reduction. Piezoelectric actuators can achieve higher precision and bandwidth than reaction wheels, and they can also provide quiet operation for sensitive instruments. The representation of the array dynamics in the studies presented here is based on Euler-Bernoulli beam theory for high-fidelity simulations. This work also presents a methodology for the combined design of distributed structural geometry for the arrays and distributed control system design. The array geometry design allows for a distributed thickness profile, and the control design determines the distributed moment on the array. Fundamental limits on slew magnitude are found using pseudo-rigid body dynamic model (PRBDM) theory. A parametric study based on a representative spacecraft model demonstrates the validity of the proposed approach and illustrates optimal design trends.

[1]  K. W. Wang,et al.  Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics , 2014 .

[2]  James T. Allison,et al.  Multidisciplinary design optimization of dynamic engineering systems , 2013 .

[3]  Christopher J. Damaren,et al.  Spacecraft Dynamics and Control: An Introduction , 2013 .

[4]  K.M. Grigoriadis,et al.  The Optimal Mix of Passive and Active Control in Structures , 1991, 1991 American Control Conference.

[5]  W. Belvin,et al.  Structural tailoring and feedback control synthesis - An interdisciplinary approach , 1988 .

[6]  Soon-Jo Chung,et al.  Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming , 2013 .

[7]  M. Balas Active control of flexible systems , 1978 .

[8]  V. Coverstone-Carroll,et al.  Optimal control of a satellite-robot system using direct collocation with non-linear programming , 1995 .

[9]  Panos Y. Papalambros,et al.  On Selecting Single-Level Formulations for Complex System Design Optimization , 2007 .

[10]  Arthur G. Erdman,et al.  Mechanism Design : Analysis and Synthesis , 1984 .

[11]  P.H. Meckl,et al.  Robust Motion Control of Flexible Systems Using Feedforward Forcing Functions , 1993, 1993 American Control Conference.

[12]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[13]  Samuel W. Sirlin Vibration isolation for spacecraft using the piezoelectric polymer PVF2 , 1987 .

[14]  Youdan Kim,et al.  Introduction to Dynamics and Control of Flexible Structures , 1993 .

[15]  W Moses Robert,et al.  Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems , 1996 .

[16]  Soon-Jo Chung,et al.  Dynamics and Performance of Tailless Micro Aerial Vehicle with Flexible Articulated Wings , 2012 .

[17]  Firdaus E. Udwadia,et al.  Simultaneous optimization of controlled structures , 1988 .

[18]  Daniel R. Herber,et al.  Dynamic system design optimization of wave energy converters utilizing direct transcription , 2014 .

[19]  James T. Allison,et al.  Multidisciplinary dynamic optimization of horizontal axis wind turbine design , 2016 .

[20]  Larry L. Howell,et al.  Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model , 2005 .

[21]  James T. Allison,et al.  Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems , 2014 .

[22]  Shlomi Arnon,et al.  Optimum transmitter optics aperture for satellite optical communication , 1998 .

[23]  R. Manning Optimum design of intelligent truss structures , 1991 .

[24]  S. E. Burke,et al.  DISTRIBUTED TRANSDUCER DESIGN FOR INTELLIGENT STRUCTURAL COMPONENTS , 1992 .

[25]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1987 .

[26]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1990 .

[27]  Henryk Flashner,et al.  Space-Time Spectral Element Method for Optimal Slewing of a Flexible Beam , 1996 .

[28]  M. J. Carpenter,et al.  Optimal Redesign of Linear Systems , 1993, 1993 American Control Conference.

[29]  Scott D. Snyder,et al.  A Study of the Response of a Simply Supported Beam to Excitation by a Piezoelectric Actuator , 1992 .

[30]  K. C. Park,et al.  Structural tailoring and feedback control synthesis - An interdisciplinary approach , 1990 .

[31]  Robert McIntyre Fowler Investigation of Compliant Space Mechanisms with Application to the Design of a Large-Displacement Monolithic Compliant Rotational Hinge , 2012 .

[32]  C. Fuller,et al.  Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plates , 1991 .

[33]  Miroslav Krstic,et al.  PDE Boundary Control for Flexible Articulated Wings on a Robotic Aircraft , 2013, IEEE Transactions on Robotics.

[34]  Hai Huang,et al.  Integrated optimization of actuator placement and vibration control for piezoelectric adaptive trusses , 2013 .

[35]  J. L. Junkins,et al.  Unified Optimization of Structures and Controllers , 1988 .

[36]  G. K. Ananthasuresh,et al.  On the design of bars and beams for desired mode shapes , 2002 .

[37]  J. L. Fanson,et al.  Structural control by the use of piezoelectric active members , 1987 .

[38]  James T. Allison,et al.  Bridging the gap between open-loop and closed-loop control in co-design: A framework for complete optimal plant and control architecture design , 2015, 2015 American Control Conference (ACC).

[39]  W. Hwang,et al.  Finite Element Modeling of Piezoelectric Sensors and Actuators , 1993 .

[40]  James T. Allison,et al.  Reducing spacecraft jitter during satellite reorientation maneuvers via solar array dynamics , 2014 .

[41]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[42]  Bruce A. Conway,et al.  Automated Design of Multiphase Space Missions Using Hybrid Optimal Control , 2009 .

[43]  O. S. Alvarez-Salazar,et al.  DESTABILIZING EFFECTS OF RATE FEEDBACK ON STRAIN ACTUATED BEAMS , 1999 .

[44]  Bruce A. Conway,et al.  Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .

[45]  Zhi Han,et al.  Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization , 2014 .

[46]  Karolos M. Grigoriadis,et al.  Optimal Redesign of Linear Systems , 1996 .

[47]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[48]  Ramana V. Grandhi,et al.  Structural and control optimization of space structures , 1989 .

[49]  Peter H. Meckl Robust Motion Control of Flexible Systems Using Feedforward Forcing Functions , 1993 .

[50]  Karolos M. Grigoriadis,et al.  Optimal mix of passive and active control in structures , 1992 .

[51]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[52]  Ron Cowen The wheels come off Kepler , 2013, Nature.

[53]  E. Crawley,et al.  Adaptive Structures , 1990 .

[54]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[55]  Singiresu S. Rao,et al.  Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey , 1994 .