Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport

First-principles lattice-dynamics calculations are used to model and compare the vibrational spectra and thermal transport of four bulk tin-sulphide materials.

[1]  A. Walsh,et al.  Metastable cubic tin sulfide: A novel phonon-stable chiral semiconductor , 2017 .

[2]  A. Walsh,et al.  Chemical and Lattice Stability of the Tin Sulfides , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  安達 定雄 Earth-Abundant Materials for Solar Cells: Cu_2-II-IV-VI_4 Semiconductors Sadao Adachi , 2016 .

[4]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[5]  Aron Walsh,et al.  Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn 2 S 3 , and Sn S 2 , 2016 .

[6]  Y. Golan,et al.  Crystal structure of a large cubic tin monosulfide polymorph: an unraveled puzzle , 2016 .

[7]  M. Green,et al.  The current status and future prospects of kesterite solar cells: a brief review , 2016 .

[8]  T. J. Whittles,et al.  Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory , 2016 .

[9]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[10]  S. C. Parker,et al.  Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions. , 2016, Physical review letters.

[11]  Aron Walsh,et al.  Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst , 2016, Journal of Materials Chemistry A.

[12]  E. Segev,et al.  Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide , 2016 .

[13]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[14]  S. Adachi Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors , 2015 .

[15]  Andrew L. Johnson,et al.  Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursor , 2015 .

[16]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[17]  S. C. Parker,et al.  Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. , 2015, The Journal of chemical physics.

[18]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[19]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[20]  A. Walsh,et al.  Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4 , 2015 .

[21]  Y. Golan,et al.  New nanocrystalline materials: a previously unknown simple cubic phase in the SnS binary system. , 2015, Nano letters.

[22]  J. Lou,et al.  Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. , 2015, Nano letters.

[23]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[24]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[25]  Tonio Buonassisi,et al.  3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation , 2014, Advanced materials.

[26]  Sang Woon Lee,et al.  Overcoming Efficiency Limitations of SnS‐Based Solar Cells , 2014 .

[27]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS , 2014 .

[28]  A. Walsh,et al.  Ellipsometric characterization and density-functional theory analysis of anisotropic optical properties of single-crystal α-SnS , 2014 .

[29]  Stefano Curtarolo,et al.  Low thermal conductivity and triaxial phononic anisotropy of SnSe , 2014, 1406.3532.

[30]  E. G. Rochow,et al.  The Chemistry of Germanium: Tin and Lead , 2014 .

[31]  Aron Walsh,et al.  Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles , 2014, 1405.6290.

[32]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[33]  Wei Wang,et al.  Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells , 2014 .

[34]  Charlotte Platzer-Björkman,et al.  A low-temperature order-disorder transition in Cu2ZnSnS4 thin films , 2014 .

[35]  Aron Walsh,et al.  Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2 , 2013 .

[36]  P. Arun,et al.  Parameters influencing the optical properties of SnS thin films , 2013, 1310.4631.

[37]  P. Dale,et al.  Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells , 2013 .

[38]  M. Edoff,et al.  A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells. , 2012, Journal of the American Chemical Society.

[39]  Aron Walsh,et al.  Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3 , 2012 .

[40]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[41]  Yue Wu,et al.  Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. , 2012, Nano letters.

[42]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[43]  A. D. Cunha,et al.  Study of polycrystalline Cu2ZnSnS4 films by Raman scattering , 2011 .

[44]  T. Bučko,et al.  A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  C. Clark,et al.  Theory and applications of atomic and ionic polarizabilities , 2010, 1004.3567.

[46]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[47]  G. Akhmedova,et al.  Effect of thallium doping on the thermal conductivity of PbTe single crystals , 2009 .

[48]  I-Wei Chen,et al.  A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se) , 2009 .

[49]  R. Miles,et al.  Thin films of tin sulphide for use in thin film solar cell devices , 2009 .

[50]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[51]  Arthur J. Nozik,et al.  Nanostructured And Photoelectrochemical Systems For Solar Photon Conversion , 2008 .

[52]  P. K. Nair,et al.  Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition , 2008 .

[53]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[54]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[55]  Robert Miles,et al.  Photovoltaic properties of SnS based solar cells , 2006 .

[56]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[57]  T. Odom,et al.  Tetrahedral zinc blende tin sulfide nano- and microcrystals. , 2006, Small.

[58]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[59]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[60]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[61]  Ivan P. Parkin,et al.  Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass , 1999 .

[62]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[65]  M. Pederson,et al.  Infrared intensities and Raman-scattering activities within density-functional theory. , 1996, Physical review. B, Condensed matter.

[66]  Z. Zainal,et al.  Cathodic electrodeposition of SnS thin films from aqueous solution , 1996 .

[67]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[68]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[69]  A. El-sharkawy,et al.  Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K , 1983 .

[70]  R. Kniep,et al.  Structure of tin(II) tin(IV) trisulphide, a redetermination , 1982 .

[71]  R. Hazen,et al.  The crystal structures and compressibilities of layer minerals at high pressure; I, SnS<2) , berndtite , 1978 .

[72]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[73]  C. Eaborn Chemistry of Germanium , 1969, Nature.

[74]  K. Chopra,et al.  POLYMORPHISM IN SOME IV‐VI COMPOUNDS INDUCED BY HIGH PRESSURE AND THIN‐FILM EPITAXIAL GROWTH , 1967 .

[75]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[76]  Stephen J. Skinner,et al.  Functional materials for sustainable energy applications , 2012 .

[77]  D. Karhánek Self-assembled monolayers studied by density-functional theory , 2010 .

[78]  Dana Sherman,et al.  Doctor of philosophy , 2018, Canadian Medical Association Journal.

[79]  H. Wiedemeier,et al.  The high temperature structure of ß-SnS and ß-SnSe and the B16-to-B33 type λ-transition path , 1981 .

[80]  W. Hofmann Ergebnisse der Strukturbestimmung komplexer Sulfide , 1935 .