Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease

[1]  M. Grossman,et al.  C9orf72 promoter hypermethylation is neuroprotective , 2015, Neurology.

[2]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[3]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[4]  Timothy A. Miller,et al.  Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes , 2015, Annals of neurology.

[5]  S. Pickering-Brown,et al.  Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS , 2014, Experimental Neurology.

[6]  J. Hardy,et al.  Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not , 2014, Experimental Neurology.

[7]  E. Holzbaur,et al.  Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation , 2014, Proceedings of the National Academy of Sciences.

[8]  L. Vissers,et al.  Genome sequencing identifies major causes of severe intellectual disability , 2014, Nature.

[9]  D. Irwin,et al.  C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD , 2014, Acta Neuropathologica.

[10]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations , 2013, Neurology.

[11]  Kevin F. Bieniek,et al.  Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[12]  Pieter B. T. Neerincx,et al.  The Genome of the Netherlands: design, and project goals , 2013, European Journal of Human Genetics.

[13]  P. Andersen,et al.  A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany , 2013, Neurobiology of Aging.

[14]  W. Hahn,et al.  Structure and ubiquitination-dependent activation of TANK-binding kinase 1. , 2013, Cell reports.

[15]  P. Andersen,et al.  Phenotypes in Swiss Patients with Familial ALS Carrying TARDBP Mutations , 2013, Neurodegenerative Diseases.

[16]  Lilia M. Iakoucheva,et al.  Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation , 2012, Cell.

[17]  Rosa Rademakers,et al.  How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? , 2012, Current opinion in neurology.

[18]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[19]  C. van Broeckhoven,et al.  The genetics and neuropathology of frontotemporal lobar degeneration , 2012, Acta Neuropathologica.

[20]  I. Mackenzie,et al.  Advances in understanding the molecular basis of frontotemporal dementia , 2012, Nature Reviews Neurology.

[21]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[22]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[23]  J. Grafman,et al.  FUS and TDP43 genetic variability in FTD and CBS , 2012, Neurobiology of Aging.

[24]  P. Tacconi,et al.  ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[25]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[26]  Kelly L. Williams,et al.  Mutation analysis of the optineurin gene in familial amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[27]  Z. Tümer,et al.  A novel heterozygous nonsense mutation of the OPTN gene segregating in a Danish family with ALS , 2012, Neurobiology of Aging.

[28]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[29]  R. Petersen,et al.  Mutations in the colony stimulating factor 1 receptor (CSF1R) cause hereditary diffuse leukoencephalopathy with spheroids , 2011, Nature Genetics.

[30]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[31]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[32]  M. Sabatelli,et al.  SOD1 G93D sporadic amyotrophic lateral sclerosis (SALS) patient with rapid progression and concomitant novel ANG variant , 2011, Neurobiology of Aging.

[33]  P. Cohen,et al.  Polyubiquitin Binding to Optineurin Is Required for Optimal Activation of TANK-binding Kinase 1 and Production of Interferon β* , 2011, The Journal of Biological Chemistry.

[34]  L. Galluzzi,et al.  Autophagy and innate immunity ally against bacterial invasion , 2011, The EMBO journal.

[35]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[36]  Young H. Kwon,et al.  Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. , 2011, Human molecular genetics.

[37]  G. Comi,et al.  Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[38]  J. Bouchard,et al.  Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[39]  V. Meininger,et al.  Screening of OPTN in French familial amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[40]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[41]  Robert B. Hartlage,et al.  This PDF file includes: Materials and Methods , 2009 .

[42]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[43]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[44]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[45]  P. Cohen,et al.  Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma , 2008, FEBS letters.

[46]  J. Hiscott Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. , 2007, Cytokine & growth factor reviews.

[47]  G. Schellenberg,et al.  A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. , 2007, Brain : a journal of neurology.

[48]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[49]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[50]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[51]  Julie S. Snowden,et al.  Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype , 2006, Acta Neuropathologica.

[52]  J. Morris,et al.  HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin‐positive, tau‐negative inclusions caused by a missense mutation in the signal peptide of progranulin , 2006, Annals of neurology.

[53]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[54]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[55]  H. Akiyama,et al.  Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62 , 2003, Neuroscience Letters.

[56]  M. Spillantini,et al.  Tau gene mutations: dissecting the pathogenesis of FTDP-17. , 2002, Trends in molecular medicine.

[57]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[58]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[59]  M. Grossman,et al.  Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier , 2014, Acta Neuropathologica.

[60]  R. Gross Extensive genetics of ALS: A population-based study in Italy , 2012 .