Second order optimality conditions for differentiable multiobjective problems

A second order optimality condition for multiobjective optimization with a set constraint is developed; this condition is expressed as the impossibility of nonhomogeneous linear systems. When the constraint is given in terms of inequalities and equalities, it can be turned into a John type multipliers rule, using a nonhomogeneous Motzkin Theorem of the Alternative. Adding weak second order regularity assumptions, Karush, Kuhn-Tucker type conditions are therefore deduced.

[1]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[2]  C. Singh,et al.  Optimality conditions in multiobjective differentiable programming , 1987 .

[3]  T. Maeda Constraint qualifications in multiobjective optimization problems: Differentiable case , 1994 .

[4]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[5]  Vasile Preda,et al.  On some sufficient optimality conditions in multiobjective differentiable programming , 1992, Kybernetika.

[6]  J. Abadie ON THE KUHN-TUCKER THEOREM. , 1966 .

[7]  Shouyang Wang,et al.  Second-order necessary and sufficient conditions in multiobjective programming ∗ , 1991 .

[8]  Brahim Aghezzaf,et al.  Second-Order Optimality Conditions in Multiobjective Optimization Problems , 1999 .

[9]  Massimo Pappalardo,et al.  Regularity Conditions for the Linear Separation of Sets , 1998 .

[10]  D. Ward,et al.  Calculus for parabolic second-order derivatives , 1993 .

[11]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[12]  A. Ben-Tal Second-order and related extremality conditions in nonlinear programming , 1980 .

[13]  M. Minami Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .

[14]  S. Y. Wang,et al.  A gap between multiobjective optimization and scalar optimization , 1991 .

[15]  B. Craven Nonsmooth multiobjective programming , 1989 .

[16]  J. Jahn Mathematical vector optimization in partially ordered linear spaces , 1986 .

[17]  D. Ward,et al.  A chain rule for parabolic second-order epiderivatives , 1994 .

[18]  J. Lin Maximal vectors and multi-objective optimization , 1976 .

[19]  F. Giannessi,et al.  On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation , 2000 .

[20]  Hidefumi Kawasaki,et al.  Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications , 1988 .

[21]  Liu Zemin,et al.  The Optimality Conditions of Differentiable Vector Optimization Problems , 1996 .

[22]  Zhongfei Li,et al.  Scalarization and lagrange duality in multiobjective optimization , 1992 .

[23]  Jean-Paul Penot Optimality conditions in mathematical programming and composite optimization , 1994, Math. Program..

[24]  I. Maruşciac,et al.  On Fritz John type optimality criterion in multi-objective optimization , 1982 .

[25]  P. Kanniappan,et al.  Necessary conditions for optimality of nondifferentiable convex multiobjective programming , 1983 .

[26]  A. A. K. Majumdar,et al.  Optimality Conditions in Differentiable Multiobjective Programming , 1997 .